Jump to content

Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Image of Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010.
This image, taken from a data visualization, shows Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010. Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svsdev.gsfc.nasa.gov/5382
NASA’s Scientific Visualization Studio/Trent L. Schindler

Arctic sea ice retreated to near-historic lows in the Northern Hemisphere this summer, likely melting to its minimum extent for the year on Sept.11, 2024, according to researchers at NASA and the National Snow and Ice Data Center (NSIDC). The decline continues the decades-long trend of shrinking and thinning ice cover in the Arctic Ocean.

The amount of frozen seawater in the Arctic fluctuates during the year as the ice thaws and regrows between seasons. Scientists chart these swings to construct a picture of how the Arctic responds  over time to rising air and sea temperatures and longer melting seasons. Over the past 46 years, satellites have observed persistent trends of more melting in the summer and less ice formation in winter.

This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024. According to the National Snow and Ice Data Center this is the 7th lowest in the satellite record). The decline continues the long-term trend of shrinking ice cover in the Arctic Ocean.
Credit: NASA’s Goddard Space Flight Center

Tracking sea ice changes in real time has revealed wide-ranging impacts, from losses and changes in polar wildlife habitat to impacts on local communities in the Arctic and international trade routes.

This year, Arctic sea ice shrank to a minimal extent of 1.65 million square miles (4.28 million square kilometers). That’s about 750,000 square miles (1.94 million square kilometers) below the 1981 to 2010 end-of-summer average of 2.4 million square miles (6.22 million square kilometers). The difference in ice cover spans an area larger than the state of Alaska. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.

Seventh-Lowest in Satellite Record

This year’s minimum remained above the all-time low of 1.31 million square miles (3.39 million square kilometers) set in September 2012. While sea ice coverage can fluctuate from year to year, it has trended downward since the start of the satellite record for ice in the late 1970s. Since then, the loss of sea ice has been about 30,000 square miles (77,800 square kilometers) per year, according to NSIDC.

Scientists currently measure sea ice extent using data from passive microwave sensors aboard satellites in the Defense Meteorological Satellite Program, with additional historical data from the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA).

Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,

Nathan Kurtz

Nathan Kurtz

Chief, NASA's Cryospheric Sciences Laboratory

Sea ice is not only shrinking, it’s getting younger, noted Nathan Kurtz, lab chief of NASA’s Cryospheric Sciences Laboratory at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

“Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,” Kurtz said.

Ice thickness measurements collected with spaceborne altimeters, including NASA’s ICESat and ICESat-2 satellites, have found that much of the oldest, thickest ice has already been lost. New research out of NASA’s Jet Propulsion Laboratory in Southern California shows that in the central Arctic, away from the coasts, fall sea ice now hovers around 4.2 feet (1.3 meters) thick, down from a peak of 8.8 feet (2.7 meters) in 1980.

Another Meager Winter Around Antarctica

Sea ice in the southern polar regions of the planet was also low in 2024. Around Antarctica, scientists are tracking near record-low sea ice at a time when it should have been growing extensively during the Southern Hemisphere’s darkest and coldest months.

Ice around the continent is on track to be just over 6.6 million square miles (16.96 million square kilometers). The average maximum extent between 1981 and 2010 was 7.22 million square miles (18.71 million square kilometers).

The meager growth so far in 2024 prolongs a recent downward trend. Prior to 2014, sea ice in the Antarctic was increasing slightly by about 1% per decade. Following a spike in 2014, ice growth has fallen dramatically. Scientists are working to understand the cause of this reversal. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change. 

“While changes in sea ice have been dramatic in the Arctic over several decades, Antarctic sea ice was relatively stable. But that has changed,” said Walt Meier, a sea ice scientist at NSIDC. “It appears that global warming has come to the Southern Ocean.”

In both the Arctic and Antarctic, ice loss compounds ice loss. This is due to the fact that while bright sea ice reflects most of the Sun’s energy back to space, open ocean water absorbs 90% of it. With more of the ocean exposed to sunlight, water temperatures rise, further delaying sea ice growth. This cycle of reinforced warming is called ice-albedo feedback.

Overall, the loss of sea ice increases heat in the Arctic, where temperatures have risen about four times the global average, Kurtz said.

About the Author

Sally Younger

Senior Science Writer

Share

Details

Last Updated
Sep 24, 2024
Location
Goddard Space Flight Center

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      As systems integration team lead for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Hector Chavez helps build a future where NASA and private industry work together to push the boundaries of space exploration.
      With the rise of commercial providers in the space sector, Chavez’s team works to ensure that these companies can develop end-to-end systems to support NASA’s low Earth orbit operations—from transporting crew and cargo to operating mission centers. His team’s role is to assess how commercial providers are using their systems engineering processes to achieve program goals and objectives.
      Official portrait of Hector Chavez. NASA/David DeHoyos With a background that spans both the National Nuclear Security Administration and NASA, Chavez brings knowledge and insight into working with interdisciplinary teams to create complex, reliable systems. He has collaborated across organizations, contracts, and government to ensure design and operational improvements were carried out safely and reliably.
      “Systems integration brings different systems together to deliver capabilities that can’t be achieved alone,” said Chavez.
      His previous role in NASA’s Safety and Mission Assurance office deepened his expertise in mitigating technical risks in human spaceflight by integrating engineering, health, and safety considerations into the development of space exploration vehicles.
      Hector Chavez and the team prepare to lift and install a receiver telescope assembly for the Optical Development System, used to test the alignment and performance of the optical systems for NASA’s Ice, Cloud, and land Elevation Satellite-2 mission, in a clean room at Goddard Space Flight Center in Greenbelt, Maryland.NASA Now with CLDP, Chavez helps these companies navigate NASA’s design processes without stifling innovation. “Our challenge is to communicate what we’ve identified during technical reviews without prohibiting commercial partners from developing innovative solutions,” he said.

      One recent success was the team’s development of two technical standards for docking systems and payload interfaces that will help ensure these systems’ compatibility with existing technologies. This work is essential in allowing commercial low Earth orbit systems to seamlessly integrate with NASA’s heritage designs, a key step toward realizing the agency’s vision for sustained commercial operations in space.

      When asked about the biggest opportunities and challenges in his role, Chavez emphasizes the importance of early collaboration. By engaging with commercial partners at the early stages of the system development life cycle, NASA can provide feedback that shapes the future of commercial low Earth orbit architecture.

      “We identify technical issues and lessons learned without dictating design solutions, allowing for innovation while ensuring safety and reliability,” explained Chavez.
      Hector Chavez receives an award from the U.S. Department of Energy. Chavez’s approach to leadership and teamwork is rooted in his values of perseverance, integrity, and encouragement. These principles have helped guide the development of CLDP’s mission and vision statements, creating an environment that promotes collaboration and creativity. 

      He is passionate about building a team culture where people feel empowered to take responsible risks and explore solutions.
      Hector Chavez receives a Silver Snoopy Award with his family at NASA’s Johnson Space Center in Houston. NASA As NASA prepares for Artemis missions and the next generation of space explorers, Chavez offers advice to the Artemis Generation: “Never do it alone. Build a community and find common ground to share a vision.”
      View the full article
    • By NASA
      Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana. The tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area, picture here.NASA/Evan Deroche NASA Michoud Assembly facility technicians Cameron Shiro (foreground), Michael Roberts, and Tien Nguyen (background) install the strain gauge on the forward adapter barrel structural test article for the exploration upper stage of the SLS rocket. NASA/Eric Bordelon NASA Michoud Assembly facility quality inspectors Michael Conley (background) and Michael Kottemann perform Ultrasonic Test (UT) inspections on the mid-body V-Strut for a structural test article for the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. NASA/Evan Deroche Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana.
      The novel tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. The EUS will serve as the upper, or in-space, stage for all Block 1B and Block 2 SLS flights in both crew and cargo configurations.
      In tandem, NASA and Boeing, the SLS lead contractor for the core stage and exploration upper stage, are producing structural test articles and flight hardware structures for the upper stage at Michoud and the agency’s Marshall Space Flight Center in Huntsville, Alabama. Early manufacturing is already underway at Michoud while preparations for an engine-firing test series for the upper stage are in progress at nearby Stennis Space Center in Bay St. Louis, Mississippi.
      “The newly modified manufacturing space for the exploration upper stage signifies the start of production for the next evolution of SLS Moon rockets at Michoud,” said Hansel Gill, director at Michoud. “With Orion spacecraft manufacturing and SLS core stage assembly in flow at Michoud for the past several years, standing up a new production line and enhanced capability at Michoud for EUS is a significant achievement and a reason for anticipation and enthusiasm for Michoud and the SLS Program.”
      The advanced upper stage for SLS is planned to make its first flight with Artemis IV and replaces the single-engine Interim Cryogenic Propulsion Stage (ICPS) that serves as the in-space stage on the initial SLS Block 1 configuration of the rocket. With its larger liquid hydrogen and liquid oxygen propellant tanks feeding four L3 Harris Technologies- built RL10C-3 engines, the EUS generates nearly four times the thrust of the ICPS, providing unrivaled lift capability to the SLS Block 1B and Block 2 rockets and making a new generation of crewed lunar missions possible.
      This upgraded and more powerful rocket will increase the SLS rocket’s payload to the Moon by 40%, from 27 metric tons (59,525 lbs.) with Block 1 to 38 metric tons (83,776 lbs.) in the crew configuration.  Launching crewed missions along with other large payloads enables multiple large-scale objectives to be accomplished in a single mission.
      Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.
      For more on SLS, visit: 
      https://www.nasa.gov/humans-in-space/space-launch-system
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Pacific Island nations such as Kiribati — a low-lying country in the southern Pacific Ocean — are preparing now for a future of higher sea levels.NASA Earth Observatory Climate change is rapidly reshaping a region of the world that’s home to millions of people.
      In the next 30 years, Pacific Island nations such as Tuvalu, Kiribati, and Fiji will experience at least 8 inches (15 centimeters) of sea level rise, according to an analysis by NASA’s sea level change science team. This amount of rise will occur regardless of whether greenhouse gas emissions change in the coming years.
      The sea level change team undertook the analysis of this region at the request of several Pacific Island nations, including Tuvalu and Kiribati, and in close coordination with the U.S. Department of State.
      In addition to the overall analysis, the agency’s sea level team produced high-resolution maps showing which areas of different Pacific Island nations will be vulnerable to high-tide flooding — otherwise known as nuisance flooding or sunny day flooding — by the 2050s. Released on Sept. 23, the maps outline flooding potential in a range of emissions scenarios, from best-case to business-as-usual to worst-case.
      “Sea level will continue to rise for centuries, causing more frequent flooding,” said Nadya Vinogradova Shiffer, who directs ocean physics programs for NASA’s Earth Science Division. “NASA’s new flood tool tells you what the potential increase in flooding frequency and severity look like in the next decades for the coastal communities of the Pacific Island nations.”
      Team members, led by researchers at the University of Hawaii and in collaboration with scientists at the University of Colorado and Virginia Tech, started with flood maps of Kiribati, Tuvalu, Fiji, Nauru, and Niue. They plan to build high-resolution maps for other Pacific Island nations in the near future. The maps can assist Pacific Island nations in deciding where to focus mitigation efforts.
      “Science and data can help the community of Tuvalu in relaying accurate sea level rise projections,” said Grace Malie, a youth leader from Tuvalu who is involved with the Rising Nations Initiative, a United Nations-supported program led by Pacific Island nations to help preserve their statehood and protect the rights and heritage of populations affected by climate change. “This will also help with early warning systems, which is something that our country is focusing on at the moment.”
      Future Flooding
      The analysis by the sea level change team also found that the number of high-tide flooding days in an average year will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s. Portions of the NASA team’s analysis were included in a sea level rise report published by the United Nations in August 2024.  
      Areas of Tuvalu that currently see less than five high-tide flood days a year could average 25 flood days annually by the 2050s. Regions of Kiribati that see fewer than five flood days a year today will experience an average of 65 flood days annually by the 2050s.
      “I am living the reality of climate change,” said Malie. “Everyone (in Tuvalu) lives by the coast or along the coastline, so everyone gets heavily affected by this.” 
      Flooding on island nations can come from the ocean inundating land during storms or during exceptionally high tides, called king tides. But it can also result when saltwater intrudes into underground areas and pushes the water table to the surface. “There are points on the island where we will see seawater bubbling from beneath the surface and heavily flooding the area,” Malie added.
      Matter of Location
      Sea level rise doesn’t occur uniformly around the world. A combination of global and local conditions, such as the topography of a coastline and how glacial meltwater is distributed in the ocean, affects the amount of rise a particular region will experience.
      “We’re always focused on the differences in sea level rise from one region to another, but in the Pacific, the numbers are surprisingly consistent,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and the agency’s sea level change science team lead.
      The impacts of 8 inches (15 centimeters) of sea level rise will vary from country to country. For instance, some nations could experience nuisance flooding several times a year at their airport, while others might face frequent neighborhood flooding equivalent to being inundated for nearly half the year.
      Researchers would like to combine satellite data on ocean levels with ground-based measurements of sea levels at specific points, as well as with better land elevation information. “But there’s a real lack of on-the-ground data in these countries,” said Hamlington. The combination of space-based and ground-based measurements can yield more precise sea level rise projections and improved understanding of the impacts to countries in the Pacific.  
      “The future of the young people of Tuvalu is already at stake,” said Malie. “Climate change is more than an environmental crisis. It is about justice, survival for nations like Tuvalu, and global responsibility.”
      To explore the high-tide flooding maps for Pacific Island nations, go to:
      https://sealevel.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-128
      Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      Climate Change Earth Earth Science Jet Propulsion Laboratory Oceans Sea Level Rise Explore More
      4 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline
      Article 23 hours ago 4 min read NASA Helps Build New Federal Sea Level Rise Website
      Article 23 hours ago 4 min read New Video Series Spotlights Engineers on NASA’s Europa Clipper Mission
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Hampton, Virginia, street is flooded by an exceptionally high tide in 2020. Rising seas could make high-tide flooding much more common in coastal communities around the world.Aileen Devlin/Virginia Sea Grant CC BY-ND 2.0 Designed to be user-friendly, the resource contains the latest sea level data, explainers, and other information from several U.S. agencies.
      The U.S. Interagency Task Force on Sea Level Change launched the U.S. Sea Level Change website on Monday, Sept. 23. Designed to help communities prepare for rising seas, the site features the latest science on changing sea levels, details about the impact on the environment and coastal communities, and strategies to mitigate the consequences. NASA led the development of the website for the task force.
      “NASA, together with our partner agencies, has studied climate change and Earth’s rising seas for decades,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The data collected by our satellites and ground-based instruments is crucial to helping policymakers and communities prepare for the consequences of sea level rise. By combining NASA data with information from other federal agencies, the U.S. Sea Level Change website is the latest example of government working for the benefit of humanity.”
      Demonstrating a whole-of-government approach, the sea level task force sits within the U.S. Global Change Research Program and includes leading researchers from NASA, the Department of Defense, the Environmental Protection Agency, the Federal Emergency Management Agency, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Agency for International Development, the U.S. Army Corps of Engineers, and the U.S. Geological Survey.
      They’ve designed a user-friendly hub that brings together information on sea level change from the various federal agencies. While being detailed and accurate for resource managers, researchers, and others seeking more technical information, the website is intended to be accessible to anyone interested in the latest science and strategies to cope with rising seas.
      “Everyone will have access to accurate sea level and flooding information in their favorite U.S. coastal city and see the timing of the projected increase in water levels and flooding frequency,” added Nadya Vinogradova Shiffer, who directs NASA’s sea level change team as well as the ocean physics program at the agency’s headquarters in Washington.
      The contributing federal agencies focus on different aspects of sea level rise, including basic scientific research and the effects of rising seas on the environment, as well as infrastructure. With the new site, users can explore the topic from different angles.
      “Having this information in one place, delivered in a consistent and authoritative way through a true interagency effort, represents a big step forward for how the federal government helps coastal communities prepare for future sea level rise,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California.
      Site visitors can find explainers on sea level science, summaries of what rising seas will look like for various parts of U.S. coastlines, and updates to the 2022 interagency report on sea level rise. The report concluded that U.S. coastlines will experience an average of 10 to 12 inches (25 to 30 centimeters) of rise above current sea levels by 2050 and that the amount of rise in the next 30 years could equal the total rise seen over the past 100 years.
      The report also outlined near-term sea level rise under various levels of greenhouse gas emissions, from best-case to business-as-usual to worst-case scenarios. The scenarios are based on improved scientific understanding of how melting glaciers and ice sheets — as well as upward and downward vertical land motion — will affect ocean heights at our coasts. The data and scenarios have been updated for the task force website.
      NASA contributions to the 2022 interagency report, as well as to the newly launched sea level website, are part of ongoing agency work to understand Earth’s rising seas. NASA’s efforts to monitor the ocean span more than 30 years and include satellites such as Sentinel-6 Michael Freilich and the Surface Water and Ocean Topography (SWOT) mission. Both were jointly developed by the agency and international and domestic partners. Agency partners on Sentinel-6 Michael Freilich include ESA (European Space Agency), the European Organisation for the Exploitation of Meteorological Satellites, and NOAA. For SWOT, NASA partners include the French space agency CNES (Centre National d’Études Spatiales), CSA (the Canadian Space Agency), and the UK Space Agency.
      For more on how NASA studies our home planet, see:
      http://www.nasa.gov/earth
      News Media Contacts
      Elizabeth Vlock / Aries Keck
      NASA Headquarters, Washington
      202-358-1600 / 202-604-2356
      elizabeth.a.vlock@nasa.gov / aries.keck@nasa.gov
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-127
      Share
      Details
      Last Updated Sep 24, 2024 Related Terms
      Climate Change Earth Jet Propulsion Laboratory NOAA (National Oceanic and Atmospheric Administration) Oceans Sea Level Rise USGS (United States Geological Survey) Explore More
      4 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline
      Article 25 mins ago 4 min read New Video Series Spotlights Engineers on NASA’s Europa Clipper Mission
      Article 20 hours ago 6 min read Celebrating 10 Years at Mars with NASA’s MAVEN Mission
      A decade ago, on Sept. 21, 2014, NASA’s MAVEN (Mars Atmospheric and Volatile EvolutioN) spacecraft…
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Just a month after its launch, ESA’s Arctic Weather Satellite has already delivered its first images, notably capturing Storm Boris, which has been wreaking havoc across central Europe. 
      View the full article
  • Check out these Videos

×
×
  • Create New...