Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9911aa-k1340x520.png

If springtime on Earth were anything like it will be on Uranus, we would be experiencing waves of massive storms, each one covering the country from Kansas to New York, with temperatures of 300 degrees below zero.

A dramatic new time-lapse movie by the Hubble telescope shows for the first time seasonal changes on the planet. Once considered one of the blander-looking planets, Uranus is now revealed as a dynamic world with the brightest clouds in the outer solar system and a fragile ring system that wobbles like an unbalanced wagon wheel. The clouds are probably made of crystals of methane, which condense as warm bubbles of gas well up from deep in the planet's atmosphere.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4458-4460: Winter Schminter
      NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Feb. 18, 2025
      During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts. 
      We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.” 
      The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure. 
      Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Feb 20, 2025 Related Terms
      Blogs Explore More
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      3 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      4 days ago
      2 min read Sols 4452-4453: Keeping Warm and Keeping Busy


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Explore This Section Science Science Activation Eclipses to Auroras: Eclipse… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation program’s Eclipse Ambassadors Off the Path project invited undergraduate students and amateur astronomers to join them as “NASA Partner Eclipse Ambassadors”. This opportunity to partner with NASA, provide solar viewing glasses, and share eclipse knowledge with underserved communities off the central paths involved:
      Partnering with an undergraduate/amateur astronomer Taking a 3-week cooperative course (~12 hours coursework) Engaging their communities with eclipse resources by reaching 200+ people These Eclipse Ambassador partnerships allowed participants to grow together as they learned new tools and techniques for explaining eclipses and engaging with the public, and Eclipse Ambassadors are recognized for their commitment to public engagement.
      In January 2025, the Eclipse Ambassadors Off the Path project held a week-long Heliophysics Winter Field School (WFS), a culminating Heliophysics Big Year experience for nine undergraduate and graduate Eclipse Ambassadors. The WFS exposed participants to career opportunities and field experience in heliophysics, citizen science, and space physics. The program included expert lectures on space physics, aurora, citizen science, and instrumentation, as well as hands-on learning opportunities with Poker Flat Rocket Range, the Museum of the North, aurora chases, and more. Students not only learned about heliophysics, they also actively participated in citizen science data collection using a variety of instruments, as well as the Aurorasaurus citizen science project app. Interactive panels on career paths helped prepare them to pursue relevant careers.
      One participant, Sophia, said, “This experience has only deepened my passion for heliophysics, science communication, and community engagement.” Another participant, Feras, reflected, “Nine brilliant students from across the country joined a week-long program at the University of Alaska Fairbanks’ (UAF) Geophysical Institute, where we attended multiple panels on solar and space physics, spoke to Athabaskan elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      This undertaking would not have been possible without the coordination, planning, leadership of many. Principal Investigators included Vivian White (Eclipse Ambassadors, Astronomical Society of the Pacific, ASP) and Dr. Elizabeth McDonald (Aurorasaurus, NASA GSFC). Other partners included Lynda McGilvary (Geophysical Institute at UAF), Jen Arseneau (UAF), Shanil Virani (ASP), Andréa Hughes (NASA), and Lindsay Glesener (University of Minnesota), as well as knowledge holders, students, and scientists.
      The Eclipse Ambassadors Off the Path project is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. To learn more, visit: www.eclipseambassadors.org.
      Winter Field School Participants standing under the aurora. Andy Witteman Share








      Details
      Last Updated Feb 18, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation 2023 Solar Eclipse 2024 Solar Eclipse Auroras Opportunities For Students to Get Involved Explore More
      2 min read An Afternoon of Family Science and Rocket Exploration in Alaska


      Article


      4 days ago
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      5 days ago
      5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read
      Sols 4441-4442: Winter is Coming
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes some polygonal fracture features just to the left of the top center of the image, using its Left Navigation Camera on sol 4439, or Martian day 4,439 of the Mars Science Laboratory mission, on Jan. 31, 2025, at 05:43:05 UTC. NASA/JPL-Caltech Earth planning date: Friday, Jan. 31, 2025
      Here in Earth’s northern hemisphere, the days are slowly getting longer, bringing with them the promise of an end to winter. While we are anticipating the return of warmer temperatures, just over 100 million kilometers (more than 62 million miles) away, Curiosity is starting to feel the bite of the colder season.
      One of the quirks of Mars’ orbital configuration is that aphelion (when Mars is farthest from the Sun) occurs about a month and a half before the southern winter solstice. This means that winters in the southern hemisphere (where Curiosity is located) are both longer and colder than those in the northern hemisphere. Consequently, we need to spend more of our power on keeping the rover warm, limiting the time that can be spent doing science. 
      Today’s plan was fairly constrained by the available power, so our various instrument and science teams had to carefully coordinate their requests to ensure that we stay within the power limits that have been budgeted out over the next several plans. Our team is never one to back down from a challenge, so this plan squeezes as much science as possible out of every watt-hour of power we were given.
      Our drive from Wednesday’s plan completed successfully (quite an accomplishment in the current terrain!). One of our wheels ended up perched a few centimetres up on a rock, so we aren’t able to use APXS or DRT today, but we were still able to unstow the arm to take some MAHLI images. 
      This plan kicks off with a pair of ChemCam and Mastcam coordinated activities. The first of these two focuses on some interesting polygonal fractures that we ended up parked in front of (see the image above). ChemCam will use its LIBS laser on these fractures before they are imaged by Mastcam. ChemCam will then use its RMI camera to take a mosaic of some features on the crater floor way off in the distance, which Mastcam will also image. Mastcam then goes it alone, with images of “Vivian Creek” (some sedimentary layers in today’s contact science target), “Dawn Mine” (a potential meteorite), and a trough off of the rover’s right side. The Environmental Science (ENV) team will continue their monitoring of the environment with a Mastcam tau to measure dust in the atmosphere as well as Navcam cloud and dust devil movies. After a short nap, the arm is unstopped to take a number of MAHLI images of “Coldwater Canyon,” over a range of distances between 5 and 25 centimeters away (about 2-10 inches).
      The second sol of this plan is largely consumed by ENV activities, including another tau and a Navcam line-of-sight observation to monitor dust. A big chunk of this sol’s plan is taken up by ChemCam passive observations (not using the LIBS laser) of the atmosphere. This “passive sky” observation allows us to measure atmospheric aerosol properties and the amount of oxygen and water in the air. Of course, ENV couldn’t have all the fun, so this sol also contains a typical ChemCam LIBS observation of “Big Dalton” with a Mastcam image afterward. After stowing the arm, we will drive off from our current location.
      Right before handing off to Monday’s plan, we wrap up with our typical early-morning ENV weekend science time, which includes more tau and line-of-sight dust observations and several Navcam cloud movies. RAD, REMS, and DAN also continue their monitoring of the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 04, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4439-4440: A Lunar New Year on Mars


      Article


      4 days ago
      4 min read Sols 4437-4438: Coordinating our Dance Moves


      Article


      6 days ago
      2 min read Sols 4434-4436: Last Call for Clouds


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Amazing Space
      Winter Sky Guide: Orion, Pleiades & Jupiter Alignment | Meteor Shower Captured! Stargazing
    • By NASA
      1 Min Read Coming Spring 2025: Planetary Defenders Documentary
      David Rankin, Senior Survey Operations Specialist at Catalina Sky Survey, is seen opening the dome structure surrounding the telescope at the asteroid-hunting facility in Mt. Lemmon, AZ. Credits:
      NASA How would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders is a gripping documentary that delves into the high-stakes world of asteroid detection and planetary defense. Journey alongside a dedicated team of astronomers and scientists working tirelessly to track and monitor near-Earth asteroids, aiming to protect our planet from potential impacts. This documentary captures the intricate and collaborative efforts of these unsung heroes, blending cutting-edge science with personal stories to reveal the human spirit behind this critical global endeavor. Witness the drama, the challenges and the triumphs of those on the front lines of planetary defense.
      The dinosaurs went extinct because they didn’t have a space program. We do have one.
      Dr. vishnu reddy
      Professor of Planetary Science, University of Arizona
      Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth. NASA In 2016, NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing mission of finding, tracking, and better understanding asteroids and comets that could pose an impact hazard to Earth.
      I really like that I am protecting the planet. And yes, I’m not the one that’s with a cape pushing the asteroid away, that’s not what I do. In some ways, my little contribution might not help just myself, but someone in the future, and I think it’s very important to do that.
      Dr. CASSANDRA LEJOLY
      RESEARCHER, SPACEWATCH®
      Dr. Cassandra Lejoly, a researcher with the University of Arizona’s SPACEWATCH® program, sits at a computer console at Kitt Peak National Observatory in Tuscon, AZ, where she conducts follow up observations on near-Earth objects. NASA Planetary Defenders is an original NASA documentary that showcases the challenges and the triumphs of those on the front lines of planetary defense. This documentary will be released on NASA+ and other streaming platforms in Spring 2025. Stay tuned for updates!
      About the Author
      efurfaro

      Share








      Details
      Last Updated Dec 03, 2024 Related Terms
      Planetary Defense Planetary Defense Coordination Office Science Mission Directorate Explore More
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      49 mins ago
      2 min read Hubble Captures an Edge-On Spiral with Curve Appeal


      Article


      2 weeks ago
      5 min read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...