Jump to content

Girls in STEM Inspired to Fly High at NASA Kennedy


NASA

Recommended Posts

  • Publishers
KSC-20240920-PH-KLS01_0114~large.jpg?w=1
Young women, ages 11 to 18, from Atlanta, Georgia, with interests in STEM (science, technology, engineering, and math), pose for a photo on Friday, Sept. 20, 2024, at the Launch and Landing Facility following their arrival at NASA’s Kennedy Space Center in Florida. The Delta Air Lines Women Inspiring Our Next Generation (WING) flight, with the help of NASA Kennedy, showcases the various women-led STEM careers available at the Florida spaceport.
NASA/Kim Shiflett

For the third straight year, scores of young women flew to NASA’s Kennedy Space Center in Florida to learn how to make their aviation dreams take flight as part of the Delta Air Lines Women Inspiring our Next Generation (WING) program. Their Boeing 737 aircraft, piloted by an all-female crew, carried 130 girls, ages 11 to 18, who hail from Atlanta area schools and aviation organizations with a strong focus on STEM.

They departed Atlanta’s Hartsfield-Jackson International Airport just after sunrise on Sept. 20 and just a few hours later, stepped onto the runway of Kennedy’s Launch and Landing Facility, where dozens of space shuttle missions landed and current-day NASA astronauts arrive at ahead of their launches to the International Space Station.

ksc-20240920-ph-kls01-0013.jpg?w=2048
A Delta plane, carrying an all-female crew and 130 young women ages 11 to 18, received a “water salute” upon arrival on Friday, Sept. 20, 2024, at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida.
NASA/Kim Shiflett

“For more than 60 years, Kennedy Space Center has been the launching point for many of the missions that have inspired the nation and challenged generations of students to reach for the stars,” said NASA Kennedy Director Janet Petro. “As an aviator myself, today is especially exciting because it showcases the diverse range of career opportunities available to young women interested in pursuing fields in science, technology, engineering, and math.”

The girls received a bus tour of NASA Kennedy facilities and photo opportunities at Launch Complex 39B, where the first woman to set foot on the Moon will launch in the coming years on Artemis III. Then at the spaceport’s Space Systems Processing Facility, the girls heard firsthand from NASA Kennedy’s women leaders, who offered encouragement and words of wisdom.

“I want you to look around you. The young women in this room are going to be the trailblazers of the Artemis Generation,” said Dicksy Chrostowski, director of the Office of Communications at NASA Kennedy. “You may very well live and work on the Moon, or be one of our first visitors to Mars. There is always a path to greatness for you to take, even if it’s hard to find.”

The girls of the Delta WING flight finished their day exploring the Kennedy Space Center Visitor Complex before reboarding the plane for their return trip to Atlanta. The experience of visiting NASA’s iconic spaceport and the lessons imparted by the women of NASA resonated with the girls.

ksc-20240920-ph-kls01-0191.jpg?w=2048
From left to right, Savitri Thomas, management and program analyst; Ales-Cia Winsley, lead Space Launch System avionics engineer; and Alexandra Philip, metrology engineer, at NASA’s Kennedy Space Center in Florida, speak on Friday, Sept. 20, 2024, to the young women of the Delta WING flight about their NASA careers and the value of STEM education.
NASA/Kim Shiflett

“As a woman of color, it’s great to see other women who look like me in these spaces and it’s very uplifting to hear their stories and how far they’ve come,” said Karsyn Britton-Mauge, a seventh grader from the Ron Clark Academy in Atlanta. “Life is filled with ups and downs, and I am so inspired by the persistence in all the women who spoke to us today. They never stopped pursuing their dreams.”

The focus on STEM education as a path to a career in aviation has been a key feature of the annual Delta WING flight since the program launched in 2015. That’s when Delta General Manager of Pilot Development Beth Poole and Delta Pilot Cheri Rohlfing noted a conspicuous lack of women in certain roles of the airline industry, including mechanics, ground personnel, and especially pilots. They initiated Delta WING flights, spearheaded by Delta’s Flight Operations and organized and operated solely by women, as a way of inspiring and educating the next generation of young women on careers in aviation. This year’s trip to NASA Kennedy was the eighth Delta WING flight and third to Kennedy.

“The accomplishments of the future are going to be realized by the dreamers, innovators, and bright minds who are sitting in classrooms today,” Petro said. “And we want these students to know there is a place for them at NASA.”

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Cory S Huston The Stanley Cup, won in 2024 by the Florida Panthers, made a visit to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center on Sept. 17, 2024, as part of its championship tour.
      The VAB currently houses components of the agency’s Artemis II mission, the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration through Artemis. Artemis II will send four astronauts around the Moon, testing NASA’s foundational human deep space exploration capabilities, the SLS rocket, and Orion spacecraft.
      Image Credit: NASA/Cory S Huston
      View the full article
    • By NASA
      Sandra Connelly, deputy associate administrator for NASA’s Science Mission Directorate, left, Lori Glaze, acting deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate, Robyn Gatens, director of the International Space Station at NASA Headquarters, and Carrie Olsen, manager of the Next Gen STEM project for NASA’s Office of STEM Engagement, discuss key takeaways at the conclusion of NASA’s LEO Microgravity Strategy Industry and Academia Workshop, Friday, Sept. 13, 2024, at Convene in Washington. NASA’s LEO Microgravity Strategy effort aims to develop and document an objectives-based approach toward the next generation of human presence in low Earth orbit to advance microgravity science, technology, and exploration.NASA/Joel Kowsky As part of NASA’s effort to advance microgravity science, technology, and exploration in low Earth orbit (LEO), the agency conducted two stakeholder workshops in London and Washington to solicit feedback from the international community, including NASA’s international partners, American industry, and academia on Sept. 6 and Sept. 13, respectively.
      The agency released a draft set of 42 objectives in late August, seeking input from U.S. industry, academia, international communities, NASA employees, and others to ensure its framework for the next generation of human presence in low Earth orbit, set to be finalized this winter, includes ideas and contributions from a range of stakeholders. The objectives span six categories: science, exploration-enabling research and technology development, commercial low Earth orbit infrastructure, operations, international cooperation, and workforce and engagement.
      “As we chart the future of human exploration, it’s vital that we harness the insights and expertise of our diverse stakeholders,” said NASA Deputy Administrator Pam Melroy. “These workshops provide an invaluable platform for stakeholders to share their insights, helping us create a strategy that reflects our shared ambitions for the future of space exploration.”
      Consultation is a fundamental aspect of NASA’s LEO Microgravity Strategy, emphasizing the importance of collaboration and the integration of diverse perspectives in advancing scientific research and technology development in low Earth orbit. By actively engaging with stakeholders –including scientists, industry partners, and educational institutions –NASA aims to gather valuable insights and align its objectives with the broader goals of the space community.
      “Engaging with a wide array of voices allows us to tap into innovative ideas that will enhance our missions,” stated Robyn Gatens, director of the International Space Station and acting director of Commercial Spaceflight. “This collaborative approach not only strengthens our current initiatives but also lays the groundwork for future advancements in space exploration.”
      To contribute to NASA’s low Earth orbit microgravity strategy, visit: www.leomicrogravitystrategy.org
      View the full article
    • By NASA
      4 min read
      Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open
      America Reyes Wang, the lead of the the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, stands beside a spacesuit display. Photo courtesy of America Reyes Wang As humans return to the Moon and push on toward Mars, scientists are ramping up research into the effects of space on the body to make sure astronauts stay healthy on longer missions. This research often involves spaceflight studies of rodents, insects, and other models in orbiting laboratories such as the International Space Station. However, space-related biological samples are difficult to get, meaning that researchers who want to study space biology are frequently out of luck.
      America Reyes Wang, a KBR employee and the lead of the Space Biology Biospecimen Sharing Program at NASA’s Ames Research Center in California’s Silicon Valley, oversees the team that has changed that. Birthed from an initiative first pioneered in the 1960s, the Biospecimen Sharing Program collects samples and data from NASA non-human space biology studies and makes them available in the public, open NASA Open Science Data Repository (OSDR). 
      To derive the most benefit from the precious few biology studies taking place in space, Reyes Wang arranges collaborations on space biology dissections with NASA-funded researchers so that her team can collect and preserve unutilized biospecimens for others to use. Outside researchers can request the samples to study in person by writing and submitting proposals. Once analyzed, researchers share their data back with the NASA OSDR for other investigators to access and study.
      The ethos of open science is central to Reyes Wang’s approach to her work. “The samples that we work with are so precious,” she said. “To me, it’s a no-brainer — why not share what we can share?”
      America Reyes Wang wears personal protective equipment (PPE) while working on an activity for NASA’s Biospecimen Sharing Program. Photo courtesy of America Reyes Wang Reyes Wang aspired to work in the scientific or medical field from a young age, driven by her desire to help people. Her father, who was born in El Salvador and dreamed of being an astronaut after watching the 1969 Moon landing, inspired Reyes Wang to fall in love with space. She also credited her Salvadoran and Mexican family with teaching her the value of understanding different experiences. 
      “To me, being Hispanic, especially as a Latina in STEM, means recognizing and building upon the hard work and sacrifices of those who came before me, as well as extending a helping hand to those around me for the betterment of us all,” Reyes Wang said. “It also means enjoying and sharing our vibrant cultures.” 
      As a student at Stanford University, Reyes Wang conducted neurobiology research with rodents, but assumed she would have to choose her love of biology over her love of space. The field of space biology allowed her to combine those interests. Having quietly dreamed of working for NASA for years, she was also thrilled to find that she could work on NASA missions as a space biologist.
      If we want to keep up with the pace of humanity’s aspirations to travel further and for longer … open science is one of the best tools we have for achieving those dreams.
      America Reyes Wang
      Biospecimen Sharing Program Lead
      Reyes Wang first found a role supporting NASA as an experiment support scientist for the agency’s Rodent Research Program. While she no longer facilitates research on the International Space Station in her current position, she uses her scientific expertise and collaborative outlook to guide the Biospecimen Sharing Program in a direction that will most help advance science. 
      Despite space biology’s status as a relatively niche field, Reyes Wang has noted its tremendous impact on the biological sciences, medicine, and technology as a whole. For example, spaceflown biological samples are often used to investigate diseases that affect people on Earth. Reyes Wang’s involvement in accelerating these studies captures her long-held desire to help people.
      “Open science gives the world an opportunity to get these important answers much more quickly,” Reyes Wang said. “If we want to keep up with the pace of humanity’s aspirations to travel further and for longer, we need to pick up the pace when it comes to getting the answers, and I think open science is one of the best tools we have for achieving those dreams.”
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer
      Share








      Details
      Last Updated Sep 26, 2024 Related Terms
      Biological & Physical Sciences Open Science Space Biology Explore More
      1 min read Women in Astronomy Citizen Science Webinar This Thursday


      Article


      3 days ago
      4 min read NASA Awards 15 Grants to Support Open-Source Science


      Article


      1 month ago
      2 min read Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award 


      Article


      1 month ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Water piping is installed near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center in December 2014. The project to replace and upgrade the center’s high pressure industrial water system was a key milestone in preparations to test the SLS (Space Launch System) core stage ahead of the successful Artemis I launch.NASA/Danny Nowlin Employees install a 96-inch valve near the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center as part of a high-pressure industrial water upgrade project in March 2015.NASA/Danny Nowlin In this March 2022 photo, crews use a shoring system to hold back soil as they install new 75-inch piping leading from the NASA Stennis High Pressure Industrial Water Facility to the valve vault pit serving the Fred Haise Test Stand.NASA/Danny Nowlin Crews use a specially designed tool to place a new pipeline liner inside the existing carrier pipe near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin Crews prepare new pipeline liner sections for installation near the Fred Haise Test Stand in 2024 in the last phase of updating the original test complex industrial water system at NASA’s Stennis Space Center.NASA/Danny Nowlin For almost 60 years, NASA’s Stennis Space Center has tested rocket systems and engines to help power the nation’s human space exploration dreams. Completion of a critical water system infrastructure project helps ensure the site can continue that frontline work moving forward.
      “The infrastructure at NASA Stennis is absolutely critical for rocket engine testing for the agency and commercial companies,” said NASA project manager Casey Wheeler. “Without our high pressure industrial water system, testing does not happen. Installing new underground piping renews the lifespan and gives the center a system that can be operated for the foreseeable future, so NASA Stennis can add to its nearly six decades of contributions to space exploration efforts.”
      The high pressure industrial water system delivers hundreds of thousands of gallons of water per minute through underground pipes to cool rocket engine exhaust and provide fire suppression capabilities during testing. Without the water flow, the engine exhaust, reaching as hot as 6,000 degrees Fahrenheit, could melt the test stand’s steel flame deflector.
      Each test stand also features a FIREX system that holds water in reserve for use in the event of a mishap or fire. During SLS (Space Launch System) core stage testing, water also was used to create a “curtain” around the test hardware, dampening the high levels of noise generated during hot fire and lessening the video-acoustic impact that can cause damage to infrastructure and the test hardware.
      Prior to the system upgrade, the water flow was delivered by the site’s original piping infrastructure built in the 1960s. However, that infrastructure had well exceeded its expected 30-year lifespan.

      Scope of the Project
      The subsequent water system upgrade was planned across multiple phases over a 10-year span. Crews worked around ever-changing test schedules to complete three major projects representing more than $50 million in infrastructure investment.
      “Many people working the construction jobs for these projects are from the Gulf Coast area, so it has created jobs and work for the people doing the construction,” Wheeler said. “Some of the specialty work has had people coming in from all over the country, as well as vendors and suppliers that are supplying the materials, so that has an economic impact here too.”
      Crews started by replacing large sections of piping, including a 96-inch line, from the 66-million-gallon onsite reservoir to the Thad Cochran (B-1/B-2) Test Stand. This phase also included the installation of a new 25,000-gallon electric pump at the High Pressure Industrial Water Facility to increase water flow capacity. The upgrades were critical for NASA Stennis to conduct Green Run testing of the SLS core stage in 2020-21 ahead of the successful Artemis I launch.
      Work in the A Test Complex followed with crews replacing sections of 75-inch piping from the water plant and installing several new 66-inch gate valves. 
      In the final phase, crews used an innovative approach to install new steel liners within existing pipes leading to the Fred Haise Test Stand (formerly A-1 Test Stand). The work followed NASA’s completion of a successful RS-25 engine test campaign last April for future Artemis missions to the Moon and beyond. The stand now is being prepared to begin testing of new RS-25 flight engines.
      Overall, the piping project represents a significant upgrade in design and materials. The new piping is made from carbon steel, with protective linings to prevent corrosion and gate valves designed to be more durable.

      Importance of Water
      It is hard to overstate the importance of the work to ensure ongoing water flow. For a typical 500-second RS-25 engine test on the Fred Haise Test Stand, around 5 million gallons of water is delivered from the NASA Stennis reservoir through a quarter-of-a-mile of pipe before entering the stand to supply the deflector and cool engine exhaust.
      “Without water to cool the deflector and the critical parts of the test stand that will get hot from the hot fire itself, the test stand would need frequent corrective maintenance,” Wheeler said. “This system ensures the test stands remain in a condition where continuous testing can happen.”
      Share
      Details
      Last Updated Sep 26, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      7 min read Lagniappe for September 2024
      Article 3 weeks ago 5 min read Lagniappe for August 2024
      Article 2 months ago 4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov walk across the crew access arm at Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida.Credit: SpaceX NASA will provide coverage of the upcoming prelaunch and launch activities for the agency’s SpaceX Crew-9 mission to the International Space Station.
      Liftoff is targeted for 1:17 p.m. EDT, Saturday, Sept. 28, from Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida. This is the first human spaceflight mission to launch from that pad. The targeted docking time is approximately 5:30 p.m. Sunday, Sept. 29.
      Live coverage of the prelaunch news conference, launch, the post-launch news conference, and docking stream on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of additional platforms, including social media.
      The SpaceX Dragon spacecraft will carry NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov to the orbiting laboratory for an approximate five-month science mission. This is the ninth crew rotation mission and the 10th human spaceflight mission for NASA to the space station supported by Dragon since 2020 as part of the agency’s Commercial Crew Program.
      The deadline for media accreditation for in-person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      Media looking for access to NASA live video feeds can subscribe to the agency’s media resources distribution list to receive daily updates and links.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Friday, Sept. 27
      11:30 a.m. – One-on-one media interviews at NASA’s Kennedy Space Center in Florida with various mission subject matter experts. Sign-up information will be emailed to media accredited to attend this launch.
      1:15 p.m. – NASA’s SpaceX Crew-9 Panel: Space Station 101 with the following participants:
      NASA Associate Administrator Jim Free Robyn Gatens, director, NASA’s International Space Station Program, and acting director, NASA’s Commercial Spaceflight Division Jennifer Buchli, chief scientist, NASA’s International Space Station Program John Posey, Dragon engineer, NASA’s Commercial Crew Program Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 12:15 p.m. Friday, Sept. 27, at ksc-newsroom@mail.nasa.gov.
      Coverage of the virtual news conference will stream live on NASA+, YouTube, Facebook, and the agency’s website. Members of the public may ask questions online by posting questions to the YouTube, Facebook, and X livestreams using #AskNASA.
      5 p.m. – Prelaunch news conference from Kennedy with the following participants:
      NASA Associate Administrator Jim Free Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, NASA’s Commercial Crew Program Dina Contella, deputy manager, NASA’s International Space Station Program Jennifer Buchli, chief scientist, NASA’s International Space Station Program William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX Brian Cizek, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station Coverage of the virtual news conference will stream live on NASA+ and the agency’s website.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m. Friday, Sept. 27, at ksc-newsroom@mail.nasa.gov.
      Saturday, Sept. 28
      9:10 a.m. – Launch coverage begins on NASA+ and the agency’s website.
      1:17 p.m. – Launch
      Following the conclusion of launch and ascent coverage, NASA will switch to audio only. Continuous coverage resumes on NASA+ at the start of rendezvous and docking and continues through hatch opening and the welcome ceremony. For NASA+ information, schedules, and links to streaming video, visit:
      https://plus.nasa.gov
      3 p.m. – Postlaunch news conference with the following participants:
      NASA Deputy Administrator Pam Melroy Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Dana Hutcherson, deputy program manager, NASA’s Commercial Crew Program Dina Contella, deputy manager, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX The virtual news conference will stream live on NASA+, YouTube, and the agency’s website.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 2 p.m. Saturday, Sept. 28, at ksc-newsroom@mail.nasa.gov.
      Sunday, Sept. 29
      3:30 p.m. – Arrival coverage begins on NASA+ and the agency’s website.
      5:30 p.m. – Targeted docking to the forward-facing port of the station’s Harmony module
      7:15 p.m. – Hatch opening
      7:40 p.m. – Welcome ceremony
      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      Audio Only Coverage
      Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA+ launch commentary, will be carried on 321-867-7135.
      Launch audio also will be available on Launch Information Service and Amateur Television System’s VHF radio frequency 146.940 MHz and KSC Amateur Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast.
      Live Video Coverage Prior to Launch
      NASA will provide a live video feed of Space Launch Complex-40 approximately six hours prior to the planned liftoff of the Crew-9 mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA+, approximately four hours prior to launch. Once the feed is live, find it online at:  http://youtube.com/kscnewsroom
      NASA Website Launch Coverage
      Launch day coverage of NASA’s SpaceX Crew-9 mission will be available on the agency’s website. Coverage will include livestreaming and blog updates beginning no earlier than 9:10 a.m. Sept. 28, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
      For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or Crew-9 blog.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following a successful launch.
      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Crew9 and #NASASocial. You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX, @Commercial_Crew
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab, @SpaceX
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Make sure to check out NASA en Espanol on X, Instagram, Facebook, and YouTube for more coverage on Crew-9.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425;antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov.
      NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.
      For NASA’s launch blog and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Share
      Details
      Last Updated Sep 25, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Crew Humans in Space ISS Research Johnson Space Center Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...