Jump to content

Lead Astromaterial Curation Engineer Salvador Martinez III


NASA

Recommended Posts

  • Publishers
jsc2023e048770.jpg?w=2048

“My parents came here from Mexico with the vision of giving us a better life than they had but, times were tough. When I was young, there were many days and nights where we had to get by with what we had. My dad worked his way up in the fabrication industry in Houston and when an opportunity came for him to start his own business, he took it. It was “now or never”. Shortly after, things changed. By the time I was in 5thgrade, our lives took a turn for the better, and going to college all of a sudden became a possibility. But even then, working at NASA felt like it could happen in a dream.

“Growing up here in Houston, you visit Space Center and you look at JSC , and you think, ‘Man, it must be incredible to be a part of NASA and to be a part of one of those amazing missions where you accomplish impossible things and maybe even discover something new about our universe’. I would have never guessed, never predicted, that I would be here. Throughout my career, I just continued to do the best I could and kept learning, striving to get better. 

“It took years but it felt like all of the sudden, I was here and everything, the entire time, was preparing me for my role on the OSIRIS-REx mission. Now, I share a place in history next to a Curation team full of the most talented, intelligent and hard-working individuals in the world and all that we have accomplished is, and will be, a part of NASA forever. I can’t even begin to describe what that means to not only me, but for my family, who did everything they could so that this could even be a possibility. For all of us, it is a dream come true.” 

—Salvador Martinez III, Lead Astromaterial Curation Engineer, Jacobs Technology, NASA’s Johnson Space Center

Image Credit: NASA/James Blair
Interviewer: NASA/Thalia Patrinos

Check out some of our other Faces of NASA.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Abigail Reigner, a systems engineer at NASA’s Glenn Research Center in Cleveland, supports the agency’s research in electrified aircraft propulsion to enable more sustainable air travel. Behind her is a 25% scale model of NASA’s SUbsonic Single Aft eNgine (SUSAN) Electrofan aircraft concept used to test and demonstrate hybrid electric propulsion systems for emission reductions and performance boosts in future commercial aircraft.
      Credit: NASA/Sara Lowthian-Hanna Growing up outside of Philadelphia, Abigail Reigner spent most of her childhood miles away from where her family called home, and where there was little trace of her Native American tribe and culture.
      Belonging to the Comanche Nation that resides in Lawton, Oklahoma, Reigner’s parents made every effort to keep her connected to her Indigenous heritage and part of a community that would later play a key role in her professional journey.
      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions."
      Abigail Reigner

      “My parents were really adamant on making sure my brother and I were still involved in the Native American traditions,” Reigner said. “We would go down to Oklahoma often in the summertime, spending time with family and staying immersed in our culture.”
      Both her parents come from a teaching background, so Reigner was surrounded by hands-on learning experiences early in life. As a school teacher, her mother would participate in local outreach events each year, talking and interacting with students. Her father, a middle school technology education teacher, taught Reigner how to use computer-aided design (CAD) and helped introduce her to the world of engineering at a young age.  
      These unique experiences helped spark Reigner’s curiosity for learning about science, technology, engineering, and math (STEM) and connecting with others in her community who shared these interests. Reigner says she never takes her upbringing for granted. 
      “I feel pretty lucky to have grown up with so many educational opportunities, and I try to use them as a way to give back to my community,” Reigner said.
      After participating in various engineering and robotics classes in high school and realizing a career in STEM was the right fit for her, Reigner went on to attend the Rochester Institute of Technology in New York where she earned bachelor’s and master’s degrees in mechanical engineering.
      During her time there, she joined the American Indian Science and Engineering Society (AISES) where she got the unique opportunity to connect with other Indigenous students and mentors in STEM fields and gain leadership experience on projects that eventually set her up for internship opportunities at NASA.
      “The opportunities I got through AISES led me to get an internship at NASA’s Jet Propulsion Laboratory during the summer of 2021, and then an eight-month co-op the following year working in the center’s materials science division,” Reigner said.
      Through AISES, Reigner also met Joseph Connolly, an aerospace engineer at NASA’s Glenn Research Center in Cleveland who was looking to recruit Indigenous students for full-time positions in the agency. Upon graduating from college, Reigner joined NASA Glenn as an engineer in the summer of 2024.
      Abigail Reigner (top far left) and Joseph Connolly (middle far right) pose with NASA employees while staffing a booth at an American Indian Science and Engineering Society (AISES) conference to help recruit Indigenous students to the agency. Credit: Abigail Reigner Today, Reigner works as a systems engineer supporting NASA Glenn’s efforts to test and demonstrate electrified aircraft propulsion technologies for future commercial aircraft as part of the agency’s mission to make air travel more sustainable.
      One of the projects she works on is NASA’s Electrified Powertrain Flight Demonstration (EPFD), where she supports risk-reduction testing that enables the project to explore the feasibility of hybrid electric propulsion in reducing emissions and improving efficiency in future aircraft.

      “It’s always good to know that you’re doing something that is furthering the benefit of humanity,” Reigner said. “Seeing that unity across NASA centers and knowing that you are a part of something that is accelerating technology for the future is very cool.” 
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency.”
      Abigail Reigner

      The growing community of Native Americans at NASA Glenn has fostered several initiatives over the years that have helped recruit, inspire, and retain Indigenous employees.
      Leveraging some of the agency’s diversity programs that provide educational STEM opportunities for underrepresented communities, the Native Americans at NASA group has encouraged more students with Indigenous backgrounds to get involved in technical projects while developing the skills needed to excel in STEM fields.
      “The Native American support group at NASA has been around since the mid-to-late 1980s and was actually one of the first Native American employee resources groups at the agency,” Connolly said. “Through this, we’ve been able to connect a number of Native employees with senior leaders across NASA and establish more agencywide recruitment efforts and initiatives for Native Americans.”
      These initiatives range from support through NASA’s Minority University Research and Education Project (MUREP) to help recruit more Indigenous students, to encouraging participation in hands-on learning experiences through projects such as NASA’s University Leadership Initiative (ULI) and the agency’s involvement in the First Nations Launch competition, which helps provide students with opportunities to conduct research while developing engineering and team-building skills.
      The efforts of the Native American community at NASA Glenn and across the agency have been successful in not only creating a direct pipeline for Indigenous students into the NASA workforce, but also allowing them to feel seen and represented in the agency, says Connolly.
      For Reigner, having this community and resource group at NASA to help guide and support her through her journey has been crucial to her success and important for the future of diversity within the agency.
      “I really feel like the reason I am here at NASA is because of the success of not just the Native American support group here at Glenn, but also Natives across the agency,” Reigner said. Without their support and initiatives to recruit and retain students, I wouldn’t be here today.” 
      Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 4 days ago 1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame 
      Article 6 days ago 1 min read NASA Encourages Careers in STEM During Event
      Article 6 days ago View the full article
    • By NASA
      Name: Matthew Kowalewski
      Title: Dragonfly Mass Spectrometer (DraMS) Lead Instrument Systems Engineer
      Formal Job Classification: Aerospace Engineer
      Organization:  Instrument and Payload Systems Engineering Branch (Code 592)
      Matthew Kowalewski is the lead instrument systems engineer for NASA’s Dragonfly Mass Spectrometer (DraMS). Photo courtesy of Matthew Kowalewski What do you do and what is most interesting about your role here at Goddard?
      As the DraMS lead instrument systems engineer for NASA’s Dragonfly mission, I lead the coordinated technical development, integrating systems and making sure communications across subsystems is maintained within the instruments as well as with the lander. I enjoy the diversity and complexity of this instrument.
      What do you enjoy most about your current position as the DraMS lead instrument systems engineer?
      I started this position in March 2023 and it has been like drinking from a fire hose ever since, but in a good way. The complexity of the instrument and the number of subsystems means this is really three separate instruments in one, and that makes my job exciting. I have to keep up with a range of disciplines across everything that Goddard does including mechanisms, lasers, mass spectrometers, gas flow systems, mechanical systems, thermal systems and electrical systems.
      I am always challenged and excited by those challenges too. Everything we do is necessary to meet the broad science requirements. Our goal is studying prebiotic chemistry on the surface of Titan.
      What is your educational background? Why did you become an aerospace engineer?
      I have a B.A. in astronomy and physics from Boston University and a master’s in physics from Johns Hopkins University.
      As a child, I was more interested in astronomy and physics. In college, I developed an extreme interest in experimental physics including the engineering required to perform these experiments.
      How did you come to Goddard?
      After college, I worked in missile defense for a private company supporting the Midcourse Space Experiment. After three years, in 1998, my wife and I wanted to move closer to family, so I came to Goddard as an instrument engineer supporting the Total Ozone Mapping Spectrometer-Earth Probe (TOMS/EP) mission. I have also supported the Ozone Monitoring Instrument on Aura, The Ozone Mapping Profiler Suite (OMPS) on Suomi NPP and JPSS, various airborne field campaigns, and the New Opportunities Office.
      What interesting field work did you do prior to joining DraMS?
      I largely did field work supporting Earth science research and new business development. We flew remote sensing instruments on high altitude aircraft in the United States, Costa Rica, South Korea [whose official name is the Republic of Korea], and Canada. Most field campaigns lasted about a month where we were housed in hotels or military bases. While supporting the New Opportunities Office, we developed instrument and mission concepts, evaluated and prioritized technologies, and fostered relationships with industry, universities, and other government organizations.
      How do you lead across multiple teams?
      I lead a large team engineers and technicians spanning across over six teams. Communication is the key. I rely on the expertise of our systems team and all of the subsystem leads. We have daily and weekly meetings where everyone is heard and they are free to approach me whenever they have concerns.
      I try to encourage open discussions including contrarian thoughts and ideas. I listen to all the options and opinions in an attempt to make the best-informed decision. Then I move forward with my decision.
      In a cost- and schedule-constrained environment, like most missions are, we cannot get stuck in the decision-making process. At some point, a decision needs to be made and the team then moves forward.
      Where have you traveled for work?
      I have been to multiple NASA centers and military bases in this country. In addition to Costa Rica, South Korea and Canada, I have also been to the Netherlands and France for mission development.
      What is the most memorable moment you have had at Goddard?
      In 2003, I was supporting the space shuttle Columbia mission, STS-107. We had a small payload in the shuttle cargo bay called a Hitchhiker. I was second shift in the Hitchhiker mission operations center. I got to interact with the astronauts both prelaunch and on orbit. It meant a lot to me. My last shift was just prior to their reentry. It really impacted me when I learned, after my shift, that the shuttle disintegrated with all hands lost.
      I had the honor of meeting these astronauts. It reminded me of the importance of the work that we do as we continue sending astronauts into orbit for missions.
      When you mentor someone, what do you advise them to do?
      I tell them to learn as much about everything that they can. For example, if they are an engineer, they should learn about science and other disciplines because a broad knowledge base will help them in the future. They will also learn why building a small piece of hardware is important for accomplishing the mission’s science goals. An electrical engineer building a circuit is actually building something for a far larger purpose.
      It is also very important to get along with others. We work with others every day, in all aspects of our lives, and we have to understand their perspectives and respect their opinions. There is more to our jobs than building things. Establishing relationships with others is what truly allows us to accomplish our goals.
      What do you do for fun?
      I have four kids and enjoy spending time with them. I coach soccer, mentor a robotics club, and participate in endurance swim races. This is my second year as a mentor to my son’s robotics club, which participates in an annual, national robotics competition to build a robot from scratch. This year we have a highly mobile, fast robot with a multi-jointed arm to manipulate objects. I think we have a good shot at going to nationals.
      Who would you like to thank?
      I wish to thank my wife Angie for supporting me over all these years as my career developed. She was often home alone with four kids during long stints of travel. I would not be where I am without her.
      I also owe much to my mentors, Scott Janz, Glenn Jaross, and Jay Al-Saadi for all their guidance, support and opportunities over the many years. Nobody can work alone, no matter how smart you are.
      What is your “five-word or phrase memoir”? A five-word or phrase memoir describes something in just five words or phrases.
      Understanding. Compassionate. Persistent. Hard-working. Curious about too many things.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Nov 12, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Dragonfly Goddard Space Flight Center People of NASA View the full article
    • By NASA
      Portraits of Mike Kincaid, associate administrator, Office of STEM Engagement (left), and Alexander MacDonald, chief economist (right). NASA Administrator Bill Nelson announced Monday Mike Kincaid, associate administrator, Office of STEM Engagement (OSTEM), and Alexander MacDonald, chief economist, will retire from the agency.
      Following Kincaid’s departure on Nov. 30, Kris Brown, deputy associate administrator for strategy and integration in OSTEM, will serve as acting associate administrator for that office beginning Dec. 1, and after MacDonald’s departure on Dec. 31, research economist Dr. Akhil Rao from NASA’s Office of Technology, Policy and Strategy will serve as acting chief economist.
      “I’d like to express my sincere gratitude to Mike Kincaid and Alex MacDonald for their service to NASA and our country,” said Nelson. “Both have been essential members of the NASA team – Mike since his first days as an intern at Johnson Space Center and Alex in his many roles at the agency. I look forward to working with Kris Brown and Dr. Akhil Rao in their acting roles and wish Mike and Alex all the best in retirement.”
      As associate administrator of NASA’s Office of STEM Engagement, Kincaid led the agency’s efforts to inspire and engage Artemis Generation students and educators in science, technology, engineering, and mathematics (STEM). He also chaired NASA’s STEM Board, which assesses the agency’s STEM engagement functions and activities, as well as served as a member of Federal Coordination in STEM, a multiagency committee focused on enhancing STEM education efforts across the federal government. In addition, Kincaid was NASA’s representative on the International Space Education Board, leading global collaboration in space education, sharing best practices, and uniting efforts to foster interest in space, science, and technology among students worldwide.
      Having served at NASA for more than 37 years, Kincaid first joined the agency’s Johnson Space Center in Houston as an intern in 1987, and eventually led organizations at Johnson in various capacities including, director of education, deputy director of human resources, deputy chief financial officer and director of external relations. Kincaid earned a bachelor’s degree from Texas A&M and a master’s degree from University of Houston, Clear Lake.
      MacDonald served as the first chief economist at NASA. He was previously the senior economic advisor in the Office of the Administrator, as well as the founding program executive of NASA’s Emerging Space Office within the Office of the Chief Technologist. MacDonald has made significant contributions to the development of NASA’s Artemis and Moon to Mars strategies, NASA’s strategy for commercial low Earth orbit development, NASA’s Earth Information Center, and served as the program executive for the International Space Station National Laboratory, leading it through significant leadership changes. He also is the author and editor of several NASA reports, including “Emerging Space: The Evolving Landscape of 21st Century American Spaceflight,” “Public-Private Partnerships for Space Capability Development,” “Economic Development of Low Earth Orbit,” and NASA’s biennial Economic Impact Report.
      As chief economist, MacDonald has guided NASA’s economic strategy, including increasing engagement with commercial space companies, and influenced the agency’s understanding of space as an engine of economic growth. MacDonald began his career at NASA’s Ames Research Center in the Mission Design Center, and served at NASA’s Jet Propulsion Laboratory as an executive staff specialist on commercial space before moving to NASA Headquarters. MacDonald received his bachelor’s degree in economics from Queen’s University in Canada, his master’s degree in economics from the University of British Columbia, and obtained his doctorate on the long-run economic history of American space exploration from the University of Oxford.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Meira Bernstein / Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / abbey.a.donaldson@nasa.gov
      View the full article
    • By NASA
      This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the Moon in more than 50 years. The background image of the lunar South Pole terrain within the nine regions is a mosaic of LRO (Lunar Reconnaissance Orbiter) WAC (Wide Angle Camera) images.Credit: NASA As NASA prepares for the first crewed Moon landing in more than five decades, the agency has identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission. These areas will be further investigated through scientific and engineering study. NASA will continue to survey potential areas for missions following Artemis III, including areas beyond these nine regions.
      “Artemis will return humanity to the Moon and visit unexplored areas. NASA’s selection of these regions shows our commitment to landing crew safely near the lunar South Pole, where they will help uncover new scientific discoveries and learn to live on the lunar surface,” said Lakiesha Hawkins, assistant deputy associate administrator, Moon to Mars Program Office.
      NASA’s Cross Agency Site Selection Analysis team, working closely with science and industry partners, added, and excluded potential landing regions, which were assessed for their science value and mission availability.
      The refined candidate Artemis III lunar landing regions are, in no priority order:
      Peak near Cabeus B Haworth Malapert Massif Mons Mouton Plateau Mons Mouton Nobile Rim 1 Nobile Rim 2 de Gerlache Rim 2 Slater Plain These regions contain diverse geological characteristics and offer flexibility for mission availability. The lunar South Pole has never been explored by a crewed mission and contains permanently shadowed areas that can preserve resources, including water.
      “The Moon’s South Pole is a completely different environment than where we landed during the Apollo missions,” said Sarah Noble, Artemis lunar science lead at NASA Headquarters in Washington. “It offers access to some of the Moon’s oldest terrain, as well as cold, shadowed regions that may contain water and other compounds. Any of these landing regions will enable us to do amazing science and make new discoveries.”
      To select these landing regions, a multidisciplinary team of scientists and engineers analyzed the lunar South Pole region using data from NASA’s Lunar Reconnaissance Orbiter and a vast body of lunar science research. Factors in the selection process included science potential, launch window availability, terrain suitability, communication capabilities with Earth, and lighting conditions. Additionally, the team assessed the combined trajectory capabilities of NASA’s SLS (Space Launch System) rocket, the Orion spacecraft, and Starship HLS (Human Landing System) to ensure safe and accessible landing sites.
      The Artemis III geology team evaluated the landing regions for their scientific promise. Sites within each of the nine identified regions have the potential to provide key new insights into our understanding of rocky planets, lunar resources, and the history of our solar system.
      “Artemis III will be the first time that astronauts will land in the south polar region of the Moon. They will be flying on a new lander into a terrain that is unique from our past Apollo experience,” said Jacob Bleacher, NASA’s chief exploration scientist. “Finding the right locations for this historic moment begins with identifying safe places for this first landing, and then trying to match that with opportunities for science from this new place on the Moon.”
      NASA’s site assessment team will engage the lunar science community through conferences and workshops to gather data, build geologic maps, and assess the regional geology of eventual landing sites. The team also will continue surveying the entire lunar South Pole region for science value and mission availability for future Artemis missions. This will include planning for expanded science opportunities during Artemis IV, and suitability for the LTV (Lunar Terrain Vehicle) as part of Artemis V.
      The agency will select sites within regions for Artemis III after it identifies the mission’s target launch dates, which dictate transfer trajectories, or orbital paths, and surface environment conditions.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      For more information on Artemis, visit:
      https://www.nasa.gov/specials/artemis
      -end-
      James Gannon / Molly Wasser
      Headquarters, Washington
      202-358-1600
      james.h.gannon@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated Oct 28, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Artemis Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Human Landing System Program Humans in Space Space Launch System (SLS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA operations engineer Daniel Velasquez, left, is reviewing the Mobile Vertipad Sensor Package system as part of the Air Mobility Pathways test project at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 17, 2023.NASA/Steve Freeman Lee esta historia en Español aquí.
      Born and raised in Peru, Daniel Velasquez moved to the United States when was 10 years old.  While that decision was a big transition for his family, it also created many opportunities for him. Now Velasquez is an operations engineer for NASA’s Air Mobility Pathfinders project at NASA’s Armstrong Flight Research Center in Edwards, California.
      Velasquez develops flight test plans for electric vertical take-off and landing (eVTOL) aircraft, specifically testing how they perform during various phases of flight, such as taxi, takeoff, cruise, approach, and landing. He was drawn to NASA Armstrong because of the legacy in advancing flight research and the connection to the Space Shuttle program.
      “Being part of a center with such a rich history in supporting space missions and cutting-edge aeronautics was a major motivation for me,” Velasquez said. “One of the biggest highlights of my career has been the opportunity to meet (virtually) and collaborate with an astronaut on a possible future NASA project.”
      Daniel Velasquez stands next to the main entrance sign at NASA’s Armstrong Flight Research Center in Edwards, California, in 2022.Daniel Velasquez Velasquez is incredibly proud of his Latino background because of its rich culture, strong sense of community and connection to his parents. “My parents are my biggest inspiration. They sacrificed so much to ensure my siblings and I could succeed, leaving behind the comfort of their home and family in Peru to give us better opportunities,” Velasquez said. “Their hard work and dedication motivate me every day. Everything I do is to honor their sacrifices and show them that their efforts weren’t wasted. I owe all my success to them.”
      Velasquez began his career at NASA in 2021 as an intern through the Pathways Internship Program while he was studying aerospace engineering at Rutgers University in New Brunswick, New Jersey. Through that program, he learned about eVTOL modeling software called NASA Design and Analysis of Rotorcraft to create a help guide for other NASA engineers to reference when they worked with the software.
      At the same time, he is also a staff sergeant in the U.S Army Reserves and responsible for overseeing the training and development of junior soldiers during monthly assemblies. He plans, creates, and presents classes for soldiers to stay up-to-date and refine their skills while supervising practical exercises, after action reviews, and gathering lessons learned during trainings.
      Daniel Velasquez graduated in 2023 from Rutgers University in New Jersey while he was an intern at NASA. Behind him is the New York City skyline.Daniel Velasquez “This job is different than what I do day-to-day at NASA, but it has helped me become a more outspoken individual,” he said. “Being able to converse with a variety of people and be able to do it well is a skill that I acquired and refined while serving my country.”
      Velasquez said he never imagined working for NASA as it was something he had only seen in movies and on television, but he is so proud to be working for the agency after all the hard work and sacrifices he made that lead him to this point. “I am incredibly proud to work every day with some of the most motivated and dedicated individuals in the industry.”
      Share
      Details
      Last Updated Oct 16, 2024 Related Terms
      Armstrong Flight Research Center Air Mobility Pathfinders project General Hispanic Heritage Month People of Armstrong People of NASA Explore More
      4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
      Article 23 mins ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 7 hours ago 7 min read What is a Coral Reef?
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Hispanic Heritage Month
      NASA en español
      Explora el universo y descubre tu planeta natal con nosotros, en tu idioma.
      Armstrong People
      View the full article
  • Check out these Videos

×
×
  • Create New...