Jump to content

Lead Astromaterial Curation Engineer Salvador Martinez III


Recommended Posts

  • Publishers
Posted
jsc2023e048770.jpg?w=2048

“My parents came here from Mexico with the vision of giving us a better life than they had but, times were tough. When I was young, there were many days and nights where we had to get by with what we had. My dad worked his way up in the fabrication industry in Houston and when an opportunity came for him to start his own business, he took it. It was “now or never”. Shortly after, things changed. By the time I was in 5thgrade, our lives took a turn for the better, and going to college all of a sudden became a possibility. But even then, working at NASA felt like it could happen in a dream.

“Growing up here in Houston, you visit Space Center and you look at JSC , and you think, ‘Man, it must be incredible to be a part of NASA and to be a part of one of those amazing missions where you accomplish impossible things and maybe even discover something new about our universe’. I would have never guessed, never predicted, that I would be here. Throughout my career, I just continued to do the best I could and kept learning, striving to get better. 

“It took years but it felt like all of the sudden, I was here and everything, the entire time, was preparing me for my role on the OSIRIS-REx mission. Now, I share a place in history next to a Curation team full of the most talented, intelligent and hard-working individuals in the world and all that we have accomplished is, and will be, a part of NASA forever. I can’t even begin to describe what that means to not only me, but for my family, who did everything they could so that this could even be a possibility. For all of us, it is a dream come true.” 

—Salvador Martinez III, Lead Astromaterial Curation Engineer, Jacobs Technology, NASA’s Johnson Space Center

Image Credit: NASA/James Blair
Interviewer: NASA/Thalia Patrinos

Check out some of our other Faces of NASA.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
      In Memoriam: Berrien Moore III [1941–2024]
      Berrien Moore III [1941–2024]Photo credit: Moore’s obituary on the University of Oklahoma’s (OU) website Berrien Moore III, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), director of the National Weather Center in Norman, OK, and Vice President for Weather and Climate Programs, died on December 17, 2024. Berrien earned an undergraduate degree from the University of North Carolina in 1963 and a doctorate degree from the University of Virginia in 1969. After graduating, he taught mathematics at the University of New Hampshire (UNH) and became tenured in 1976. 
      In 1987, Berrien became director of the Institute for the Study of Earth, Oceans, and Space (ISEOS) at UNH. NASA chose ISEOS to be one of the 24 founding members of the “Working Prototype Federation” of Earth Science Information Partners (ESIP) in 1998. Still active more than 25 years later, ESIP is now a thriving nonprofit entity funded by cooperative agreements with NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey, which brings together interdisciplinary collaborations (among over 170 partners) to share technical knowledge and engage with data users.
      Berrien left UNH in 2008, to serve as the founding Executive Director of Climate Central, a think-tank based in Princeton, NJ, which is dedicated to providing objective and understandable information about climate change
      Berrien moved to OU in 2010. Given his diverse academic, research, and career experience in global carbon cycle, biogeochemistry, remote sensing, environmental and space policy, and mathematics, Berrien was a natural choice to become the architect and principal investigator for the Geostationary Carbon Cycle Observatory (GeoCARB), a proposed NASA Earth Venture Mission that would have monitored plant health and vegetation stress throughout the Americas from geostationary orbit, probing natural sources, sinks, and exchange processes that control carbon dioxide, carbon monoxide, and methane in the atmosphere. While the mission was ultimately cancelled, the lessons learned are being applied to similar current and future Earth observing endeavors, e,g, NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission.
      Berrien served on and chaired numerous government-affiliated scientific committees throughout his career. From 1995–1998 he served on the National Research Council’s Committee on Global Change Research, which produced the landmark report, “Global Environment Change: Research Pathways for the Next Decade.” In 2011, he was an author on the National Research Council’s (NRC) decadal survey, “Earth Science and Applications from Space: A Community Assessment and Strategies for the Future.”
      Berrien participated on international scientific committees as well. From 1998–2002, he was the chair of the Science Committee of the International Geosphere Biosphere Programme (IGBP). He was also a lead author within the Intergovernmental Panel on Climate Change’s Third Assessment Report, which was released in 2001.
      Berrien served in several roles specific to NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee. He served as Chair of the Earth Observing System (EOS) Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. He was also active at NOAA, having chaired the agency’s Research Review Team and served on the Research and Development Portfolio Review Team for NOAA’s Science Advisory Board. 
      Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award. He also received the 2007 Dryden Lectureship in Research Medal from the American Institute of Aeronautics and Astronautics and was honored for his contributions to the IPCC when the organization received the 2007 Nobel Peace Prize.
      View the full article
    • By Space Force
      A joint team of AFGSC Airmen and Vandenberg SFB Guardians launched an unarmed Minuteman III intercontinental ballistic missile equipped with a single telemetered joint test assembly re-entry vehicle from Vandenberg SFB. 

      View the full article
    • By NASA
      4 Min Read What is an Engineer? (Grades K-4)
      This article is for students grades K-4.
      Engineers solve problems. They use science and math to create new things or make things work better. There are different kinds of engineers. They work on different kinds of projects. Some engineers design buildings or machines. Others find ways to move heat, power, or water from one place to another. Some create new tools.
      NASA needs engineers. They design the things humans need to fly in space or on airplanes. Engineers make great ideas become real.
      What do NASA engineers work on?
      NASA has many missions. These missions need different kinds of engineers. Here are some of the ways engineers help NASA get the job done.
      Spacecraft: These are vehicles that fly in space. NASA engineers decide how a spacecraft should be built and what it should do. They also make sure it will keep astronauts safe. Airplanes: NASA engineers work on airplanes. They design how the plane will look, how fast it will fly, and how much fuel it will use. Telescopes: Telescopes help us see space objects like stars and planets. Some telescopes are placed in orbit for the best view. NASA engineers design them to work in space. Computers: Computers can do complex tasks faster than people. NASA engineers write code that tells computers what to do. Anthony Vareha, NASA flight director Why is it fun to be a NASA engineer?
      At NASA, engineers get to work on cool projects. They use science and creativity to find new ways to reach big goals. Here are some of the reasons they like their work.
      “Being an engineer is like solving a huge puzzle or building something cool with building blocks. The difference is that the things we make help make the world better and improve people’s lives.” – Othmane Benefan, materials research engineer “I like being an engineer because I get to learn new things almost every day. Most of the engineering projects at NASA are super unique because we are building satellites that study new places all over the solar system (planets, asteroids, even the Sun), and it’s really fun to learn all the ways that we can use robots to explore.” – Phillip Hargrove, launch mission integration engineer “I love to build and create things. At NASA, there’s always something to do, and I get to work with people I enjoy.” – Jenna Sayler, aerospace engineer “I love being an engineer because I love trying to understand how things work. There’s a lot of stuff in our universe. Engineering is the tool I’ve chosen to help make sense of it all.” – Brian Kusnick, mechanical engineer Elaine Stewart, contamination control engineer What are some things I can do to help me become an engineer?
      Be curious and excited to learn new things. Learn more about how different types of machines work. Practice making, building, or tinkering with things. Work hard in math and science classes. When you get to middle school or high school, try a NASA student challenge or apply to be a NASA intern. Students over age 16 can apply for NASA internships. Interns work on real projects. NASA team members help guide interns as they learn. Wendy Okolo, Ph.D., aerospace research engineer How can I try engineering today?
      NASA has fun engineering activities that you can do at home. Here are a few to try:
      Make and color a paper airplane. Let your imagination fly! Build a tower with pasta! How tall can you build it? Make a paper Mars helicopter. See which design works best! Build a new spacecraft using items in your house! A CubeSat is a small satellite. Try to build a CubeSat in this online game. When you do these projects, try them more than once. Make a small change each time. See if it makes your design work better. Engineering is all about testing ideas!
      Learn More
      JPL Education: Student Projects (Grades K-4) NASA Space Place Explore More for Students Grades K-4 View the full article
    • By NASA
      Electrical engineer Scott Hesh works on a sub-payload canister at NASA’s Wallops Flight Facility near Chincoteague, Virginia. The cannister will be part of a science experiment and a demonstration of his Swarm Communications technology.Credits: NASA’s Wallops Flight Facility/Berit Bland Scott Hesh, an electrical engineer at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore, was announced Nov. 2 as the FY22 IRAD Innovator of the Year, an award presented by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      “An electrical engineer with an insatiable curiosity, Scott Hesh and his team have worked hand-in-glove with science investigators since 2017,” said Goddard Chief Technologist Peter Hughes. “He developed a technology to sample Earth’s upper atmosphere in multiple dimensions with more accurate time and location data than previously possible with a sounding rocket.”
      Related: NASA Sounding Rockets Launch Multiple Science Payloads
      Newly proven technology developed at NASA’s Wallops Flight Facility near Chincoteague, Virginia, turns a single sounding rocket into a hive deploying a swarm of up to 16 instruments. The technology offers unprecedented accuracy for monitoring Earth’s atmosphere and solar weather over a wide area.
      Engineers Josh Yacobucci (left) and Scott Hesh test fit a science sensor sub-payload into a Black Brant sounding rocket at Wallops.Credits: NASA’s Wallops Flight Facility/Berit Bland The Internal Research and Development (IRAD) Innovator of the Year award is presented by Goddard’s Office of the Chief Technologist to individuals who demonstrate the best in innovation.
      “Scott has this enthusiasm for what he does that I think is really contagious,” Sounding Rocket Program technologist Cathy Hesh said. “He’s an electrical engineer by education, but he has such a grasp on other disciplines as well, so he’s sort of like a systems engineer. If he wants to improve something, he just goes out and learns all sorts of things that would be beyond the scope of his discipline.”
      Mechanical engineer Josh Yacobucci has worked with Scott Hesh for more than 15 years, and said he always learns something when they collaborate.
      “Scott brings this great perspective,” Yacobucci said. “He could help winnow out things in my designs that I hadn’t thought of.”
      “For his interdisciplinary leadership resulting in game-changing improvements for atmospheric and solar science capabilities,” Hughes said, “Scott Hesh deserves Goddard’s Innovator of the Year Award.”
      By Karl B. Hille
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      “I’m always proud every time I see a new picture taken by Hubble,u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.”u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rob Andreoliu003c/emu003eu003c/strongu003e Name: Phathom Donald
      Title: Mission Engineer
      Formal Job Classification: Satellite Systems Engineer
      Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      As a member of the flight operations team for the Hubble Space Telescope, I monitor and evaluate the performance of Hubble’s subsystems through its telemetry. I send commands to Hubble as needed for routine maintenance, maintaining communication with the spacecraft, and recovery from onboard anomalies. I also support ground system maintenance to ensure that operations run smoothly and uninterrupted.
      On the flight software team, I build and run simulations to verify flight software changes before they’re installed onto Hubble. Just like how your laptop or your smartphone gets regular updates to add new features or to fix bugs, Hubble gets flight software updates for added capabilities and to address new issues.
      Being a flight controller was a dream of mine, so being able to command a spacecraft has been really exciting. I also really enjoy coding, and it’s been interesting seeing how all these critical and complicated activities happen at the same time. I think the work I do outside of my flight controller role has helped me become a better flight controller, because I have a better idea of what’s happening behind the scenes — things feel a bit more intuitive to me.
      How did you find your path to Goddard?
      During undergrad, I was on a path to become a power systems engineer. But one day in my senior design class, our professor invited the Transiting Exoplanet Survey Satellite (TESS) project manager at the time to speak to our class about systems engineering and its applications to the mission. Within five minutes of this presentation, I was on the verge of tears. This presentation alone changed the course of my career because it reminded me that I love the stars and I love space. More importantly, it made me feel like a career at NASA was actually possible.
      So, I emailed the speaker and asked him for advice, and he responded with excellent guidance and encouragement. I saved that email and essentially used it as a career guide. After graduating, I worked for a NASA contractor first as a quality engineer, then as a model-based systems engineer. While I was in that role, I pursued my master’s, and about a month after graduating, I saw the job posting for Hubble’s flight operations team at Goddard. After a year or so of settling in, I reached out to that same speaker and I let him know I took his advice, I made it to NASA, and that I couldn’t be more grateful for his help. He responded beautifully, saying that he was humbled to have played any role in me getting to where I wanted to be.
      What first sparked your interest in space?
      My dad used to take my brothers and me to the Griffith Observatory in Los Angeles all the time. I loved going to those shows in the planetarium and just feeling engrossed in what they were teaching. I’d always wanted to take an astronomy class, but I didn’t get the chance until my last year of undergrad. I’m so glad I did; it just reaffirmed that space is for me.
      u0022In moments where Hubble’s mission is at risk, I’ll look at the situation and think, ‘Okay, what can we do to either fix or mitigate this problem?’u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues.”u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e What is your educational background?
      I graduated from Howard University in Washington, D.C., in 2014 with a bachelor’s in electrical engineering. I also have a master’s in space systems engineering from Stevens Institute of Technology in Hoboken, New Jersey. Right now, I’m pursuing a graduate certificate in control systems from the University of Michigan at Dearborn to prepare for a role supporting Hubble’s pointing and control subsystems. After I’m done, I plan to pursue a graduate certificate in aerospace for that same reason; I want to pick up and hone skills in order to maximize my contributions to Hubble.
      How do you keep a cool head when you have a mission-critical situation?
      I think I’m generally a pretty calm person, but in moments where Hubble’s mission is at risk, I tend to focus on what is in my power to get done. So I’ll look at the situation and think, “OK, what can we do to either fix or mitigate this problem?” And I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues. I work with really brilliant, dedicated people who love what they do, so I know that they’re going to do what’s best for the mission.
      What is your proudest accomplishment at Goddard?
      To be honest, I’m always proud every time I see a new picture taken by Hubble, especially after we’ve recovered it from an anomaly. It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.
      Who are your science role models, and how have they shaped your career in science?
      Katherine Johnson: she was an African American mathematician who was pivotal in the success of the early human spaceflight missions carried out by NASA. Her complex trajectory calculations got the first man into space and back unharmed. I also admire Dr. Sian Proctor: she was the first Black woman to pilot a spacecraft.
      As a minority, it can be easy to feel like an outlier in the space industry. Seeing people like Katherine and Dr. Proctor succeed and excel in these fields adds a bit of comfort. They show me that these technically demanding roles are attainable.
      How do you like to spend your time outside of work? What are your hobbies?
      I spend a lot of time with my tiny dog, Chara. I named her after a yellow star in the Hunting Dogs constellation. Chara is Greek for “joy,” and to say she brings me joy would be an understatement.
      I actually have a new obsession with snorkeling and freediving. I went snorkeling for the first time in early 2021 and it completely changed my life. Before snorkeling, I was terrified of water. After snorkeling, I wanted to be a fish. I just love the freedom that comes with the lack of equipment. I love the peace that I feel underwater.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      “The stars are not too far.”
      What is some advice you would give your 10-year-old self?
      You are capable of more than you know, more than what people might try to make you believe. Do what makes you feel fulfilled and define your own success. Your passion is your strength.
      By Hannah Richter
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Black History Month Hubble Space Telescope People of Goddard Latest News
      More NASA News Article8 Min ReadJohn Moisan Studies the Ocean Through the ‘Eyes’ of AI
      Article5 Min ReadMark SubbaRao Brings Data to Life Through Art
      5 Min ReadNASA Scientists & Historian Named AAAS 2022 Fellows
      Article 6 Min ReadPhathom Donald Brings Space Closer as a Hubble Mission Engineer
      Article 5 Min ReadTrena Ferrell Inspires Through Science and Education
      Article View the full article
  • Check out these Videos

×
×
  • Create New...