Members Can Post Anonymously On This Site
Multiple Generations of Stars in the Tarantula Nebula
-
Similar Topics
-
By NASA
NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception.
Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.
Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy director, provided remarks.
Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics.
“I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.
Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”
NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.”
NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”
NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis Return to Newsletter Explore More
1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors
Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
Article 2 hours ago View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Maurice Valdez, Niki Parenteau, Dori Myer, and Judy Alfter. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Space Science and Astrobiology Star: Maurice Valdez
Maurice Valdez is a system administrator, supporting desktop systems and website development for the Space Science and Astrobiology Division. Maurice is recognized for his focus and commitment to supporting the division’s scientific productivity by keeping systems compliant and functioning. His can-do attitude makes him instrumental in the success of the team, whether he is finding new solutions for hybrid meetings, fixing equipment, patching systems, or troubleshooting issues.
Photo credit: Pacific Science Center Space Science and Astrobiology Star: Niki Parenteau
Niki Parenteau, a research scientist for the Exobiology Branch, embodies the true spirit of an interdisciplinary astrobiologist. She has applied her expertise to identify potential biosignatures of life on exoplanets and has taken a leading role in the project office for the development of the Habitable Worlds Observatory (HWO), where she facilitates collaborative efforts of Ames scientists across the division and shepherds the larger scientific community to enable observations of biosignatures with HWO.
Space Biosciences Star: Dori Myer
Archivist Dori Myer has made an outstanding contribution in the Flight Systems Implementation Branch’s multi-year effort to digitize and preserve institutional knowledge. Under her guidance, the records management team digitized tens of thousands of historical records, preserving the branch’s institutional knowledge for years to come. Her exceptional initiative and dedication have transformed our record management processes, ensuring the accessibility of NASA’s rich institutional knowledge while streamlining its access in the modern age.
Earth Science Star: Judy Alfter
Judy Alfter, a Deputy Project Manager in the Earth Science Project Office (ESPO), has excelled in her multi-faceted role during the field campaign for the Plankton, Aerosol, Cloud, ocean Ecosystem Post-launch Airborne eXperiment (PACE-PAX). Judy launched the deployment phase of PACE-PAX, leading the effort to set up Twin Otter flight operations at Marina Municipal Airport in California. Following this phase, she transitioned to Santa Barbara in California to support the mobilization of PACE-PAX ship operations and concluded deployment activities at NASA Armstrong Flight Research Center’s main campus as ESPO site manager for ER-2 flight operations.
View the full article
-
By NASA
Michelle Dominguez proudly displays her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024.NASA Dorcas Kaweesa holding her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024. NASA In October 2024, Michelle Dominguez and Dorcas Kaweesa from the Ames Aeromechanics Office were each awarded as a “Technology Rising Star” at the Women of Color STEM Conference in Detroit, Michigan. Rising Star awards are for “young women, with 21 years or less in the workforce, who are helping to shape technology for the future.” Ms. Dominguez is a Mechanical Systems Engineer working on rotorcraft design for vertical-lift vehicles such as air taxis and Mars helicopters. Dr. Kaweesa is a Structural Analysis Engineer and Deputy Manager for planetary rotorcraft initiatives including Mars Exploration Program and Mars Sample Return. More information on this award is at https://intouch.ccgmag.com/mpage/woc-stem-conference-awardees .
View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Forrest Melton, Ariel Deutsch, Dan Sirbu, and Chanel Idos. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Earth Science Star: Forrest Melton
Forrest Melton serves as Senior Research Scientist with the Atmospheric Science Branch, and leads the OpenET consortium, which develops a unique satellite-driven support system for water resources management using six satellite-driven models and publicly available data from NASA, USGS and NOAA. OpenET currently provides data for 23 states in the western U.S., delivers data at daily, monthly, seasonal and annual timescales, and has become a necessary tool for domestic and international water managers and agricultural producers (feature story).
Space Science & Astrobiology Star: Ariel Deutsch
Ariel Deutsch is an early career planetary scientist in the Planetary Systems Branch for the Bay Area Environmental Research Institute. She is recognized for being invited to join the Artemis II Science Team to support the Artemis II Lunar Science Objectives. Her Lunar Data Analysis Program grant was selected to improve our understanding of the distribution and abundance of volatiles cold-trapped on the Moon, which include Artemis III candidate landing sites.
Space Science & Astrobiology Star: Dan Sirbu
Dan Sirbu is a key member of the Exoplanet Technologies group within the Astrophysics Branch. He currently serves as the principal investigator on the Photonic Integrated Circuit High-Contrast Imaging for Space Astronomy (AstroPIC) early career initiative, serves multiple roles on the Multi-Star Wavefront Control (MSWC) project, and is involved in outreach efforts. In recent months, Dan has been the primary operator performing MSWC testing, setting several new performance records demonstrating high contrast imaging of planets around binary stars. Dan’s work also advances NASA’s and humanity’s capability of imaging exoplanets in multi-star systems, including Alpha Centauri, the nearest star system to the Sun.
Space Biosciences Star: Chanel Idos
Chanel Idos serves as the ARC Resource Analyst for the Human Research Program (HRP) in the Space Biosciences Division. HRP is a multifaceted initiative encompassing six Elements and Offices at JSC and three Divisions across two Directorates at ARC. Her exceptional expertise, coupled with outstanding organizational skills and clear, effective communication, have been instrumental in ensuring the seamless operation of HRP activities at ARC. Chanel’s contributions have been pivotal in achieving excellent cost performance for FY24, positioning ARC to enter FY25 in an optimal state.
View the full article
-
By NASA
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
The guitar shape in the “Guitar Nebula” comes from bubbles blown by particles ejected from the pulsar through a steady wind as it moves through space. A movie of Chandra (red) data taken in 2000, 2006, 2012, and 2021 has been combined with a single image in optical light from Palomar. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years long, blasting away from the pulsar (seen as the bright white dot). The movie shows how this filament has changed over two decades. X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.
The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).
Astronomers have nicknamed the structure connected to the pulsar PSR B2224+65 as the “Guitar Nebula” because of its distinct resemblance to the instrument in glowing hydrogen light. The guitar shape comes from bubbles blown by particles ejected from the pulsar through a steady wind. Because the pulsar is moving from the lower right to the upper left, most of the bubbles were created in the past as the pulsar moved through a medium with variations in density.
X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical: (Hubble) NASA/ESA/STScI and (Palomar) Hale Telescope/Palomar/CalTech; Image Processing: NASA/CXC/SAO/L. Frattare At the tip of the guitar is the pulsar, a rapidly rotating neutron star left behind after the collapse of a massive star. As it hurtles through space it is pumping out a flame-like filament of particles and X-ray light that astronomers have captured with Chandra.
How does space produce something so bizarre? The combination of two extremes — fast rotation and high magnetic fields of pulsars — leads to particle acceleration and high-energy radiation that creates matter and antimatter particles, as electron and positron pairs. In this situation, the usual process of converting mass into energy, famously determined by Albert Einstein’s E = mc2 equation, is reversed. Here, energy is being converted into mass to produce the particles.
Particles spiraling along magnetic field lines around the pulsar create the X-rays that Chandra detects. As the pulsar and its surrounding nebula of energetic particles have flown through space, they have collided with denser regions of gas. This allows the most energetic particles to escape the confines of the Guitar Nebula and fly to the right of the pulsar, creating the filament of X-rays. When those particles escape, they spiral around and flow along magnetic field lines in the interstellar medium, that is, the space in between stars.
The new movie shows the pulsar and the filament flying towards the upper left of the image through Chandra data taken in 2000, 2006, 2012 and 2021. The movie has the same optical image in each frame, so it does not show changes in parts of the “guitar.” A separate movie obtained with data from NASA’s Hubble Space Telescope (obtained in 1994, 2001, 2006, and 2021) shows the motion of the pulsar and the smaller structures around it.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Hubble Space Telescope data: 1994, 2001, 2006, and 2021.X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula, which forms the outline of the guitar, also control changes in how many particles escape to the right of the pulsar, causing subtle brightening and fading of the X-ray filament, like a cosmic blow torch shooting from the tip of the guitar.
The structure of the filament teaches astronomers about how electrons and positrons travel through the interstellar medium. It also provides an example of how this process is injecting electrons and positrons into the interstellar medium.
A paper describing these results was published in The Astrophysical Journal and is available here.
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description:
This release features two short videos and a labeled composite image, all featuring what can be described as a giant flame-throwing guitar floating in space.
In both the six second multiwavelength Guitar Nebula timelapse video and the composite image, the guitar shape appears at our lower left, with the neck of the instrument pointing toward our upper left. The guitar shape is ghostly and translucent, resembling a wispy cloud on a dark night. At the end of the neck, the guitar’s headstock comes to a sharp point that lands on a bright white dot. This dot is a pulsar, and the guitar shape is a hydrogen nebula. The nebula was formed when particles being ejected by the pulsar produced a cloud of bubbles. The bubbles were then blown into a curvy guitar shape by a steady wind. The guitar shape is undeniable, and is traced by a thin white line in the labeled composite image.
The pulsar, known as PSR B2224+65, has also released a long filament of energetic matter and antimatter particles approximately 12 trillion miles long. In both the composite image and the six second video, this energetic, X-ray blast shoots from the bright white dot at the tip of the guitar’s headstock, all the way out to our upper righthand corner. In the still image, the blast resembles a streak of red dots, most of which fall in a straight, densely packed line. The six second video features four separate images of the phenomenon, created with Chandra data gathered in 2000, 2006, 2012, and 2021. When shown in sequence, the density of the X-ray blast filament appears to fluctuate.
A 12 second video is also included in this release. It features four images that focus on the headstock of the guitar shape. These images were captured by the Hubble Space Telescope in 1994, 2001, 2006, and 2021. When played in sequence, the images show the headstock shape expanding. A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula also control changes in the pulsar’s blast filament. Meaning the same phenomenon that created the cosmic guitar also created the cosmic blowtorch shooting from the headstock.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.