Jump to content

Sols 4311–4313: A Weekend of Engineering Curiosity


NASA

Recommended Posts

  • Publishers

3 min read

Sols 4311–4313: A Weekend of Engineering Curiosity

NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 5, 2024, Sol 4088 of the Mars Science Laboratory Mission, at 10:40:14 UTC.
NASA’s Mars rover Curiosity captured this image of its rover wheels using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on February 5, 2024, Sol 4088 — Martian day 4,088 of the Mars Science Laboratory Mission — on Feb. 5, 2024 at 10:40:14 UTC.
NASA/JPL-Caltech/MSSS

Earth planning date: Friday, Sept. 20, 2024

Today, we planned for 3 sols over the weekend. On Sol 4311, we have a lot of science activities planned, including some ChemCam and Mastcam observations of the “Obelisk” target. These activities will allow our instruments to gather data about rock features of interest within the rover workspace, including a LIBS analysis which will give us more insight into chemical composition. We will also take some landscape images of the ridges within the upper Gediz Vallis channel.

But we don’t only plan for science activities – as a robotic arm engineer, I’m looking forward to a new in-flight activity we are executing on Sol 4311. We are testing parallelism between arm activities and a telecommunications window between the rover and an orbiter. As we get further and further into the mission, we have been testing what activities we might be able to do in parallel (ie: they are happening at the same time on the rover!) in order to be more efficient during our on time. After this execution, we’ll be able to get more information on how both activities went, and if it was successful, this will be able to save us a lot of time in the future!

On 4312, we have some remote science planned, including a Navcam dust devil movie, a ChemCam active observation, and some Mastcam imaging. Equally exciting, though, is our planned full MAHLI wheel imaging. This is a traverse activity where we do a short drive, take photos of the wheels, do another short drive and take more photos, such that we are getting imaging of the entire circumference of our wheels. This is an activity we do periodically to assess the state and health of the wheels. For full documentation of our wheel state, we will drive seven meters over the course of about three hours. I’ve included an image above of the last time we performed full MAHLI wheel imaging (on Sol 4088).

On 4313, we will execute some more science activities. This includes more remote science with a Navcam suprahorizon movie and a dust devil survey, and ChemCam AEGIS execution. Recall that AEGIS is our autonomous targeting system that will be able to pick out targets of interest around our new location post-drive. We’ll also execute some early morning science including a Mastcam tau atmospheric observation to measure dust in the atmosphere.

From an engineering perspective, I am looking forward to seeing how our parallelism test went, and to view the updated imaging of our wheels. It will definitely be an exciting weekend for our little rover!

Written by Remington Free, Operations Systems Engineer at NASA Jet Propulsion Laboratory

Share

Details

Last Updated
Sep 23, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4316-4317: Hunting for Sulfur
      This image was taken by the Left Navigation Camera (NavCam) aboard NASA’s Mars rover Curiosity, and captures the bright stones of the “Sheep Creek” target — just above the rover wheel – which strongly resemble elemental sulfur blocks identified earlier in the traverse. This image was taken on sol 4314, Martian day 4,314 of the Mars Science Laboratory mission, on Sept. 24, 2024, at 20:24:50 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Sept. 25, 2024 
      Navigating the rugged, unforgiving Martian terrain is always a challenge, and our recent attempt to reach the “Sheep Creek” target highlights this. We had aimed for small, distant bright rocks, but from 50 meters away (about 164 feet), the limited resolution of our images made it difficult to fine-tune navigation. After an ambitious drive, the rover came agonizingly close — stopping just short of these small bright rocks. The rocks, with their distinctive rounded and pitted “weathering” pattern (pictured), strongly resemble elemental sulfur blocks that we’ve encountered before. Frustratingly, although the target rocks were right under the front wheel and clearly visible in our navigation cameras, they remained just out of reach of the rover’s arm.
      While the rover’s arm couldn’t quite reach the bright stones of Sheep Creek, we didn’t let that stop us and planned to use other onboard instruments to help us analyze the composition, textures, and context before we move to our next position. As the Keeper of the Plan for the Geology and Mineralogy theme group, my role was to ensure all those activities were recorded in the plan.
      To find out the composition of the stones of Sheep Creek, we used ChemCam (our onboard laser) to observe two promising stones we’ve named “Arch Rock” and “Ash Mountain.” We’re hoping to see if they have any evidence of elemental sulfur as their appearance suggests. For a closer look at the texture, we will take high-resolution, color images with Mastcam (which you can also view in 3D with red and blue anaglyph glasses!). We also want to look at an interesting transition between light-colored and dark-colored bedrock nearby, which we will cover with more high-resolution, colored images. This transition could give us clues about where the unusual white rocks of Sheep Creek came from and how they formed.
      We had our eye on another bright rock in the area, named “Beryl Lake.” It had an interesting bright-toned crusty appearance and as we could reach it with the rover arm, we used our APXS tool (think of it as a chemical scanner) to see its composition and if it had any traces of sulfur. We took a closer look with our rover hand lens (MAHLI) at a rock called “Aster Lake,” which had intriguing white patches that might be similar to the stones of Sheep Creek. Ultimately, our science goal this plan was to collect data on whether these bright-toned stones had evidence of elemental sulfur and increase our understanding on how they formed.
      Next, we’ll carefully reposition the rover to move closer to these interesting targets — a maneuver that we call a “bump” — so that next plan, set to occur over the weekend, we’ll be able to get up close and personal with the white stones of Sheep Creek. While the rover waits for the weekend plan, we’re setting up the rover to do some “untargeted” science after the drive. This includes using an automated tool called AEGIS that finds interesting targets on its own and zaps them with the ChemCam laser. Plus, it’s a good time to record some observations of the modern Martian environment, so we’ll make the most of the time to measure dust levels, take movies that will hopefully capture some dust devils, and look at clouds — if any — in the Martian sky.
      We’re looking forward to the weekend plan to hopefully get another chance to do some contact science on targets that may be rich in sulfur!
      Written by Amelie Roberts, Ph.D. Candidate at Imperial College London
      Share








      Details
      Last Updated Sep 27, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4314-4315: Wait, What Was That Back There?


      Article


      3 days ago
      3 min read A Striped Surprise
      Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white…


      Article


      4 days ago
      3 min read Sols 4311–4313: A Weekend of Engineering Curiosity


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4314-4315: Wait, What Was That Back There?
      A view of the right-middle wheel of NASA’s Mars rover Curiosity, one of the rover’s six well-traveled wheels. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Sept. 22, 2024, sol 4312 (Martian day 4,312) of the Mars Science Laboratory Mission, at 18:37:41 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Sept. 23, 2024
      After a busy weekend of activities, Curiosity is ready for another week of planning. One of the activities over the weekend was our periodic check-in on our wheels to see how they are holding up on the rough terrain. The image shows the MAHLI view of the right-middle (RM) wheel, which is still holding up well despite taking some of the worst abuse from Mars.
      We are planning contact science with APXS and MAHLI on “Burst Rock,” which is a target that has an interesting texture and has bright-toned clasts and a gray coating. It is part of the Gediz Vallis Ridge channel deposits and will help out understanding of the channel. Unfortunately, it was too rough to brush, but it is clean enough that we can still get good science data.
      We are doing a lot of imaging and remote science today. We are taking Mastcam mosaics of multiple targets. “Log Meadow” is a target designed to get a look at the distribution of the white stones in the channel. “Grand Sentinel” is a target on the opposite side of our previous workspace, allowing us to document it from a different angle. “Tunnel Rock” and “Tombstone Ridge” are sedimentary rocks that may have ripple-like layers; examining the layer contours helps inform how rocks were formed. Lastly, “Gravel Ridge” is a target in “Arc Pass” where we are continuing to examine clasts and sedimentary layers. We also take a ChemCam LIBS observation of Log Meadow and a long-distance RMI image of “Chanbank,” another area of white stones. We round it off with a Navcam mosaic of the rover to monitor dust on the deck. 
      After wrapping up the targeted and contact science, we’re ready to drive. As the science team had time to look a bit more at the data collected in that region, they discovered this target that was worth going back for. We are driving back to the area of the white stones to do more contact science on rocks that look similar to the elemental sulfur we saw earlier this year. Planning ahead, I got to scout this drive on Friday, laying out the safest path and looking for parking spots that were both good for communications as well as for doing contact science. The target “Sheep Creek” is about 50 meters (about 164 feet) to the northeast, which makes the drive a challenge — the resolution of our imagery at that range makes it harder to pinpoint these small rocks. We do have really good imaging in that direction, and the terrain isn’t super scary, so the Rover Planners are going to try to make it in one drive. During the drive, we will be taking a MARDI “sidewalk” movie (a series of images looking below the rover for the entire length of the drive), which will help document the channel. On the second sol of the plan, we do some additional atmospheric and untargeted science. We have a Navcam suprahorizon movie (looking at the crater rim to evaluate dust in the atmosphere) and a dust devil movie. We also have a ChemCam AEGIS observation, where the rover will autonomously select a target to image. Overnight, CheMin does an “empty cell” analysis to confirm that the system is cleaned out and ready for the next sampling campaign.
      Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 24, 2024 Related Terms
      Blogs Explore More
      3 min read A Striped Surprise
      Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white…


      Article


      1 day ago
      3 min read Sols 4311–4313: A Weekend of Engineering Curiosity


      Article


      1 day ago
      3 min read Sols 4309–4310: Leaning Back, Driving Back


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Students participating in NASA’s Minority University Research AND Education Project (MUREP) Innovation and Tech Transfer Idea Competition on-site experience. Credit: Josh Valcarcel NASA is awarding $7.2 million to six minority-serving institutions to grow initiatives in engineering-related disciplines and fields for learners who have historically been underrepresented and underserved in science, technology, engineering, and math (STEM) fields.
      “NASA is excited to award funding to six minority-serving institutions, paving the way for greater diversity in engineering and STEM,” said Shahra Lambert, NASA senior advisor for engagement and equity, NASA’s Headquarters in Washington. “NASA is committed to fostering diversity and providing essential academic resources to empower the next generation of innovators.” 
      NASA’s Minority University Research and Education Project (MUREP), in partnership with the National Science Foundation’s Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) network, provides support to increase diversity in engineering. It offers academic resources to college students, aiming to have a long-term impact on the engineering field.
      “With these awards, we are continuing to create pathways that increase access and opportunities in STEM for underrepresented and underserved groups,” said Keya Briscoe, MUREP manager. “NASA continues to invest in initiatives that are critical in driving innovation, fostering inclusion, and providing access to the STEM ecosystem for everyone.”
      The awardees and their project titles are as follows:
      Alabama A&M University Pathways to NASA: Empowering Underrepresented STEM Talent through Strategic Partnerships and Innovative Learning
      Morgan State University – Baltimore Developing NASA Pathways to Broadening Participation in Space Exploration Technology
      North Carolina Agricultural and Technical State University Strengthening Opportunities in Aerospace Research and Education
      University of Central Florida Hy-POWERED: Hydrogen-POWered Engineering Research and Education for Diversity
      University of Colorado, Denver Seed, Support, and Cultivate: Innovative Strategies for Underrepresented Minorities in STEM Education
      University of Houston Partnership for Inclusivity in Engineering Education and Research for Space
      NASA administers the grants through its Office of STEM Engagement. These investments enhance the research, academic and technology capabilities of minority-serving institutions through multiyear cooperative agreements, while advancing NASA’s vision for a diverse and inclusive workforce.
      To learn more about NASA STEM Engagement Funding Opportunities, visit:
      https://go.nasa.gov/3AZedZ8
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-269-1600
      Abbey.a.donaldson@nasa.gov
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4309–4310: Leaning Back, Driving Back
      NASA’s Mars rover Curiosity captured this image of a large fractured slab of bedrock, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4307  — Martian day 4,307 of the Mars Science Laboratory Mission — on Sept. 17, 2024 at 15:50:36 UTC. Earth planning date: Wednesday, Sept. 18, 2024
      The lengthy drive planned on Monday executed as expected, and we came in today to find our rover parked at a jaunty angle on a sloped ridge. There were some worries that the slope might limit our ability to use the arm for contact science in this plan (we don’t want to do anything that might cause the rover to slide down the slope!), but after some careful consideration, we received the good news that all six of our wheels are holding on firmly to the ground, so there was no risk of slipping.
      On Monday, two different options for today’s plan were laid out. The first option, a “full contact science” plan where we don’t drive, was to be executed if Monday’s drive put us exactly where we hoped. The second, a “touch-and-go” plan where we do some light contact science before driving away, was to be executed if the drive didn’t put us where we wanted to be. As it happened, the rover was a little too enthusiastic about driving, and actually put our desired workspace under its body rather than in front where the arm could reach it. There’s always a little uncertainty in the final position after such a long drive! So, we decided to stick with a touch-and-go plan that includes a tiny backwards drive of less than a metre to reposition our desired target in front of the rover.
      Although we need to re-position, we aren’t slowing down on science for even a second. We are parked in front of a large fractured slab of bedrock, which can be seen in the above image. This slab became the contact science target for this plan with DRT and APXS activities on “The Minster.” Mastcam is getting a workout today as well, with large mosaics of “North Channel,” “Buckeye Ridge,” “Quinn,” and “Island Pass.” These mosaics are all documenting various aspects of the ridge we’re sat on and the edge of the Gediz Vallis Channel, including sedimentary rocks, white sulphate materials, and gravels and fine-grained materials. ChemCam is also taking a turn on the bedrock slab with a LIBS activity on “Grand Sentinel” and a mosaic of some exposed white stones off in the distance.
      The second sol of the plan, after our short drive, is largely taken over by environmental science activities, though there is our usual post-drive ChemCam AEGIS. These activities include a Mastcam tau and Navcam line-of-sight to measure the amount of dust in the atmosphere around and above us, as well as a dust devil movie, suprahorizon cloud movie, and some Navcam deck monitoring to see if our driving or the wind is moving around any of the sand and dust on the rover deck. The team is also taking the usual set of REMS, RAD, and DAN observations.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4307-4308: Bright Rocks Catch Our Eyes


      Article


      2 days ago
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      3 days ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4307-4308: Bright Rocks Catch Our Eyes
      NASA’s Mars rover Curiosity captured this image while exploring a rock-strewn channel of Gediz Vallis on the Red Planet. Mission scientists were particularly intrigued to investigate several bright-toned rocks (at the middle-right, bottom-right and bottom-center of the image), similar to rocks that Curiosity had encountered previously that were unexpectedly rich in sulfur. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4306 — Martian day 4,306 of the Mars Science Laboratory Mission — on Sept. 16, 2024 at 12:47:18 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 16, 2024
      We made good progress through Gediz Vallis in the weekend drive, landing in a segment of the channel containing a mix of loose rubble and other channel-filling debris. Amongst the jumbled scene, though, particular objects of interest caught our eye: bright rocks. In past workspaces in Gediz Vallis, similar bright rocks have been associated with very high to almost pure sulfur contents. As all good geologists know, however, color is not diagnostic, so we cannot assume these are the same as sulfur-rich rocks we have encountered previously. The only way to know is to collect data, and that was a significant focus of today’s plan.
      We planned multiple mosaics across the examples of bright rocks visible in the image above. Mastcam and ChemCam RMI will cover “Bright Dot Lake” and “Sheep Creek” both in the right midfield of the image. Mastcam imaged the example in the bottom right corner of the image at “Marble Falls,” and ChemCam LIBS targeted one of the small bright fragments along the bottom of the image at “Blanc Lake.” There was also a small bit of bright material in the workspace, but unfortunately, it was not reachable by APXS. APXS analyzed a spot near the bright material, at target “Frog Lake,” and MAHLI was able to tack on a few extra images around that target that should capture the bright material. MAHLI also imaged a vuggy target in the workspace at “Grasshopper Flat.”  The wider context of the channel was also of interest for imaging, so we captured the full expanse of the channel with one Mastcam mosaic, and focused another on mounds distributed through the channel at target “Copper Creek.”
      Even with all this rock imaging, we did not miss a beat with our environmental monitoring. We planned regular RAD, REMS, and DAN measurements, mid and late day atmospheric dust observations, a cloud movie, and dust devil imaging. 
      Our drive is planned to take us up onto one of the ridges in the channel. Will we find more bright rocks there? Or something new and unexpected that was delivered down Gediz Vallis by some past Martian flood or debris flow? Only the channel knows!
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Blogs Explore More
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      22 hours ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      4 days ago
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...