Jump to content

Hera planetary defence mission: solving asteroid mysteries


Recommended Posts

Hera_planetary_defence_mission_solving_a Video: 00:03:12

There’s a mystery out there in deep space – and solving it will make Earth safer. That’s why the European Space Agency’s Hera mission is taking shape – to go where one particular spacecraft has gone before.

On 26 September 2022, moving at 6.1 km/s, NASA’s DART spacecraft crashed into the Dimorphos asteroid. Part of our Solar System changed. The impact shrunk the orbit of the Great Pyramid-sized Dimorphos around its parent asteroid, the mountain-sized Didymos.

This grand experiment was performed to prove we could defend Earth against an incoming asteroid, by striking it with a spacecraft to deflect it. DART succeeded. But that still leaves many things scientists don’t know: What is the precise mass and makeup of Dimorphos? What did the impact do to the asteroid? How big is the crater left by DART’s collision? Or has Dimorphos completely cracked apart, to be held together only by its own weak gravity?

That’s why we’re going back – with ESA’s Hera mission. The spacecraft will revisit Dimorphos to gather vital close-up data about the deflected body, to turn DART’s grand-scale experiment into a well-understood and potentially repeatable planetary defence technique.

The mission will also perform the most detailed exploration yet of a binary asteroid system – although binaries make up 15% of all known asteroids, one has never been surveyed in detail.

Hera will also perform technology demonstration experiments, including the deployment ESA’s first deep space ‘CubeSats’ – shoebox-sized spacecraft to venture closer than the main mission then eventually land – and an ambitious test of 'self-driving' for the main spacecraft, based on vision-based navigation.

By the end of Hera’s observations, Dimorphos will become the best studied asteroid in history – which is vital, because if a body of this size ever struck Earth it could destroy a whole city. The dinosaurs had no defence against asteroids, because they never had a space agency. But – through Hera – we are teaching ourselves what we can do to reduce this hazard and make space safer.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      The Asteroid That Destroyed Dinosaurs Had a DEADLY Companion!
    • By NASA
      Learn Home Culturally Inclusive Planetary… Biological & Physical… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Culturally Inclusive Planetary Engagement in Colorado
      In August 2024, the NASA Science Activation program’s Planetary Resources and Content Heroes (ReaCH) project held a Culturally Inclusive Planetary Engagement workshop at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado for the planetary science community. These workshops are designed to enhance the ability of scientists to engage Black and Latinx youth and their families in planetary science. Workshops include discussions with local educators about evidence-based engagement strategies and experiences conducting hands-on planetary science activities, along with an opportunity to practice these approaches during an event with local partners.
      Planetary scientists and engineers from Boulder, as well as scientists from Florida, Maryland, and Alaska participated. ReaCH partnered with the Boys & Girls Clubs of Metro Denver, whose staff participated in the workshop to share their perspectives. Other educators local to the Denver area also participated, along with an educational specialist from NASA@ My Library (another Science Activation program). The workshop culminated in an event at the Shopneck Boys & Girls Club in Brighton, CO; workshop participants facilitated a variety of hands-on planetary activities for approximately 120 children. Workshop participants also shared information about college pathways into science professions with teenagers at the Club.
      During feedback with evaluators, workshop participants shared, “I got to have hands-on experience working with an underserved population, which I haven’t done before in a workshop. I think this is the necessary next step for me. I am tired of just learning about things. I want to DO things. This gave me the ability to do it without setting up everything myself.”
      Through careful revisions to these workshops and detailed evaluation, the Planetary ReaCH project is building a replicable model that will be used to support similar workshops for other science fields. Members of the planetary and astrobiology community are invited to apply to attend future ReaCH workshops.
      Planetary ReaCH is supported by NASA under cooperative agreement award number 80NSSC21M0003 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Workshop participants experimented with activities such as this model of impact cratering. Share








      Details
      Last Updated Oct 03, 2024 Editor NASA Science Editorial Team Related Terms
      Biological & Physical Sciences Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs


      Article


      1 day ago
      3 min read 2024 ASGSR Art Competition! 


      Article


      1 day ago
      7 min read NASA’s Webb Reveals Unusual Jets of Volatile Gas from Icy Centaur 29P


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps and Roscosmos cosmonaut Alexander Grebenkin are returning to Earth after months aboard the International Space Station conducting scientific experiments and technology demonstrations for the agency’s SpaceX Crew-8 mission. The four launched on March 3 aboard a SpaceX Dragon spacecraft from NASA’s Kennedy Space Center in Florida.
      Here’s a look at some scientific milestones accomplished during their mission:
      Revealing resistant microorganisms
      NASA astronaut Jeanette Epps extracts DNA for the Genomic Enumeration of Antibiotic Resistance in Space experiment, which surveys the station for antibiotic-resistant organisms and sequences their DNA to examine adaptations to space. Results could support development of measures to protect astronauts and people in buildings and facilities on Earth, such as hospitals, from resistant bacteria.
      NASA Brain organoid models
      NASA astronaut Mike Barratt processes samples for Human Brain Organoid Models for Neurodegenerative Disease & Drug Discovery. This investigation uses human brain organoids created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provide a platform to study these diseases and their treatments and to potentially address how extended spaceflight affects the brain.
      NASA Bioprinting human tissues
      Tissue samples bioprinted in microgravity are higher quality than those printed on the ground. NASA astronaut Matthew Dominick processes cardiac tissue samples for the Redwire Cardiac Bioprinting Investigation. Results could advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions.
      NASA Growing better drugs
      NASA astronaut Mike Barratt works on Pharmaceutical In-space Laboratory – 02, which uses the station’s Advanced Space Experiments Processor to study how microgravity affects the production of various types of protein crystals. The ability to produce better crystals could lead to manufacturing improvements and new applications and better performance for pharmaceutical compounds, potentially providing more positive patient experiences.
      NASA Alloy solidification
      NASA astronaut Jeanette Epps works on Materials Science Lab Batch 3a, two projects investigating the solidification of metallic alloys in space. Insights gained could help improve alloy solidification processes on the ground, supporting the development of materials with superior chemical and physical properties for applications in space and on Earth.
      NASA Fueling the flames
      The Solid Fuel Ignition and Extinction- Growth and Extinction Limit investigation determines how fuel temperature affects material flammability. This image shows the fuel surface during a burn (the black part of the sphere) and the distance traveled by the flame (blue). Results could improve researchers’ understanding of fire growth and inform the development of optimal fire suppression techniques to protect crews on future missions.
      NASA Very long-distance calls
      NASA astronaut Jeanette Epps wraps up an ISS Ham Radio session on April 10, with students in Italy. The program connects students and enthusiasts with astronauts in space via amateur radio. Participants study space, radio waves, and related topics to prepare questions before their scheduled call.
      NASA Student robotics competition
      For Astrobee-Zero Robotics, students compete to have their code control one of the space station’s Astrobee robots. The experience helps inspire the next generation of scientists, engineers, and explorers. NASA astronaut Mike Barratt works with the Astrobee robot named Bumble during operations for the project.
      NASA Immune function in space
      NASA astronaut Jeanette Epps prepares samples for Immunity Assay, a study of how spaceflight affects immune function. Previously, astronaut immune function could only be examined pre- and postflight, but a newly developed assay allows for testing during flight. This capability provides a more precise assessment of the immune changes that happen in space.
      NASA Getting weighed in weightlessness
      The Space Linear Acceleration Mass Measurement Device calculates a crew member’s mass based on Newton’s Second Law of Motion, which states force equals mass times acceleration. NASA astronaut Matthew Dominick performs maintenance on the device, used in support of multiple NASA and ESA (European Space Agency) investigations on how spaceflight affects the body.
      NASA Satellites for science
      NASA astronaut Mike Barratt prepares for the Nanoracks Cubesat Deployer Mission 27on April 16. The mission deployed seven research satellites: a reflectometer to measure sea ice, tests of telemetry instruments and solar cells, a hyperspectral thermal imager, a gamma-ray burst detector, a new remote sensing technique, and a magnetic field measurement test.
      NASA Remote-controlled robots
      NASA astronaut Jeanette Epps remotely manipulates a robot on the ground for Surface Avatar. The investigation tests system ergonomics, operator response to feedback, and the potential challenges for actual orbit-to-ground remote control. Such operation is an important capability for future exploration missions to the Moon and Mars.
      NASA The power of photographs
      NASA astronauts Mike Barratt, Matthew Dominick, and Loral O’Hara take photographs in the station’s cupola, adding to the more than 4.7 million images produced for Crew Earth Observations. These images support scientific studies on topics ranging from aquatic organisms and icebergs to the effects of artificial lighting at night and inform the response of decision-makers to natural disasters such as volcanoes and floods.
      NASA Reflections on the Moon
      For Earthshine from ISS, astronauts photograph the Moon throughout the lunar cycle to study changes in the light it reflects from Earth. Results could help validate the concept of observing Earth’s climate from satellite-borne instruments and add to researchers’ understanding of how the planet’s climate is changing.
      NASA Packing a Dragon
      NASA astronauts Matthew Dominick and Tracy C. Dyson pack frozen samples into the SpaceX Dragon spacecraft for return to Earth and analysis by researchers. The spacecraft launched to the orbiting laboratory on March 21 for NASA’s SpaceX 30th commercial resupply services mission, carrying scientific experiments and supplies, and returned to Earth on April 30.
      NASA Cygnus delivers
      Northrop Grumman’s Cygnus cargo spacecraft attached to the Canadarm2 robotic arm before being released from the space station on July 12. NASA’s Northrop Grumman 20th commercial resupply services mission arrived Feb. 1 with experiments on 3D printing, robotic surgery, tissue cartilage, and more.
      NASA Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Download high-resolution photos and videos of the research mentioned in this article. Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      NASA Astronaut Don Pettit, Crewmates Arrive at Space Station
      View the full article
    • By NASA
      NASA astronaut Tracy C. Dyson works on a computer inside the International Space Station. Credit: NASA NASA astronaut Tracy C. Dyson will share details of her recent six-month mission aboard the International Space Station in a news conference at 11 a.m. EDT Friday, Oct. 4, at the agency’s Johnson Space Center in Houston.
      The news conference will air live on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Media interested in participating in person must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, Oct. 3, at 281-483-5111 or jsccommu@mail.nasa.gov.
      Media wishing to participate by phone must contact the newsroom no later than two hours before the start of the event. NASA’s media accreditation policy is available online. To ask questions by phone, media must dial into the news conference no later than 10 minutes prior to the start of the call. Questions may also be submitted on social media by using #AskNASA.
      Spanning 184 days in space, Dyson’s third spaceflight covered 2,944 orbits of the Earth and a 78-million-mile journey as an Expedition 70/71 flight engineer. Dyson also conducted one spacewalk of 31 minutes, bringing her career total to 23 hours, 20 minutes on four spacewalks. Dyson returned to Earth on Sept. 23, as planned, along with her crewmates, Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub.
      Dyson launched on March 23 and arrived at the station March 25 alongside Roscosmos cosmonaut Oleg Novitskiy and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6.
      While aboard the orbiting lab, Dyson conducted dozens of scientific and technology activities to benefit future exploration in space and life back on Earth. She remotely controlled a robot on Earth’s surface from a computer aboard the station and evaluated orbit-to-ground operations. She operated a 3D bioprinter to print cardiac tissue samples, which could advance technology for creating replacement organs and tissues for transplants on Earth.
      Dyson also participated in the crystallization of model proteins to evaluate the performance of hardware that could be used for pharmaceutical production and ran a program that uses student-designed software to control the station’s free-flying robots, inspiring the next generation of innovators.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Sep 30, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Astronauts Expedition 70 Expedition 71 International Space Station (ISS) ISS Research Tracy Caldwell Dyson View the full article
  • Check out these Videos

×
×
  • Create New...