Members Can Post Anonymously On This Site
XRISM unveils black hole and supernova remnant surroundings
-
Similar Topics
-
By NASA
4 Min Read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
Image showing the structure of galaxy NGC 5084, with data from the Chandra X-ray Observatory overlaid on a visible-light image of the galaxy. Chandra’s data, shown in purple, revealed four plumes of hot gas emanating from a supermassive black hole rotating “tipped over” at the galaxy’s core. Credits: X-ray: NASA/CXC, A. S. Borlaff, P. Marcum et al.; Optical full image: M. Pugh, B. Diaz; Image Processing: NASA/USRA/L. Proudfit NASA researchers have discovered a perplexing case of a black hole that appears to be “tipped over,” rotating in an unexpected direction relative to the galaxy surrounding it. That galaxy, called NGC 5084, has been known for years, but the sideways secret of its central black hole lay hidden in old data archives. The discovery was made possible by new image analysis techniques developed at NASA’s Ames Research Center in California’s Silicon Valley to take a fresh look at archival data from the agency’s Chandra X-ray Observatory.
Using the new methods, astronomers at Ames unexpectedly found four long plumes of plasma – hot, charged gas – emanating from NGC 5084. One pair of plumes extends above and below the plane of the galaxy. A surprising second pair, forming an “X” shape with the first, lies in the galaxy plane itself. Hot gas plumes are not often spotted in galaxies, and typically only one or two are present.
The method revealing such unexpected characteristics for galaxy NGC 5084 was developed by Ames research scientist Alejandro Serrano Borlaff and colleagues to detect low-brightness X-ray emissions in data from the world’s most powerful X-ray telescope. What they saw in the Chandra data seemed so strange that they immediately looked to confirm it, digging into the data archives of other telescopes and requesting new observations from two powerful ground-based observatories.
Hubble Space Telescope image of galaxy NGC 5084’s core. A dark, vertical line near the center shows the curve of a dusty disk orbiting the core, whose presence suggests a supermassive black hole within. The disk and black hole share the same orientation, fully tipped over from the horizontal orientation of the galaxy.NASA/STScI, M. A. Malkan, B. Boizelle, A.S. Borlaff. HST WFPC2, WFC3/IR/UVIS. The surprising second set of plumes was a strong clue this galaxy housed a supermassive black hole, but there could have been other explanations. Archived data from NASA’s Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile then revealed another quirk of NGC 5084: a small, dusty, inner disk turning about the center of the galaxy. This, too, suggested the presence of a black hole there, and, surprisingly, it rotates at a 90-degree angle to the rotation of the galaxy overall; the disk and black hole are, in a sense, lying on their sides.
The follow-up analyses of NGC 5084 allowed the researchers to examine the same galaxy using a broad swath of the electromagnetic spectrum – from visible light, seen by Hubble, to longer wavelengths observed by ALMA and the Expanded Very Large Array of the National Radio Astronomy Observatory near Socorro, New Mexico.
“It was like seeing a crime scene with multiple types of light,” said Borlaff, who is also the first author on the paper reporting the discovery. “Putting all the pictures together revealed that NGC 5084 has changed a lot in its recent past.”
It was like seeing a crime scene with multiple types of light.
Alejandro Serrano Borlaff
NASA Research Scientist
“Detecting two pairs of X-ray plumes in one galaxy is exceptional,” added Pamela Marcum, an astrophysicist at Ames and co-author on the discovery. “The combination of their unusual, cross-shaped structure and the ‘tipped-over,’ dusty disk gives us unique insights into this galaxy’s history.”
Typically, astronomers expect the X-ray energy emitted from large galaxies to be distributed evenly in a generally sphere-like shape. When it’s not, such as when concentrated into a set of X-ray plumes, they know a major event has, at some point, disturbed the galaxy.
Possible dramatic moments in its history that could explain NGC 5084’s toppled black hole and double set of plumes include a collision with another galaxy and the formation of a chimney of superheated gas breaking out of the top and bottom of the galactic plane.
More studies will be needed to determine what event or events led to the current strange structure of this galaxy. But it is already clear that the never-before-seen architecture of NGC 5084 was only discovered thanks to archival data – some almost three decades old – combined with novel analysis techniques.
The paper presenting this research was published Dec. 18 in The Astrophysical Journal. The image analysis method developed by the team – called Selective Amplification of Ultra Noisy Astronomical Signal, or SAUNAS – was described in The Astrophysical Journal in May 2024.
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Share
Details
Last Updated Dec 18, 2024 Related Terms
Black Holes Ames Research Center Ames Research Center's Science Directorate Astrophysics Chandra X-Ray Observatory Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research General Hubble Space Telescope Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Missions NASA Centers & Facilities Science & Research Supermassive Black Holes The Universe Explore More
4 min read Space Gardens
Article 18 mins ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 1 hour ago 4 min read NASA Open Science Reveals Sounds of Space
NASA has a long history of translating astronomy data into beautiful images that are beloved…
Article 1 hour ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; Even matter ejected by black holes can run into objects in the dark. Using NASA’s Chandra X-ray Observatory, astronomers have found an unusual mark from a giant black hole’s powerful jet striking an unidentified object in its path.
The discovery was made in a galaxy called Centaurus A (Cen A), located about 12 million light-years from Earth. Astronomers have long studied Cen A because it has a supermassive black hole in its center sending out spectacular jets that stretch out across the entire galaxy. The black hole launches this jet of high-energy particles not from inside the black hole, but from intense gravitational and magnetic fields around it.
The image shows low-energy X-rays seen by Chandra represented in pink, medium-energy X-rays in purple, and the highest-energy X-rays in blue.
In this latest study, researchers determined that the jet is — at least in certain spots — moving at close to the speed of light. Using the deepest X-ray image ever made of Cen A, they also found a patch of V-shaped emission connected to a bright source of X-rays, something that had not been seen before in this galaxy.
Called C4, this source is located close to the path of the jet from the supermassive black hole and is highlighted in the inset. The arms of the “V” are at least about 700 light-years long. For context, the nearest star to Earth is about 4 light-years away.
Source C4 in the Centaurus A galaxy.NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; While the researchers have ideas about what is happening, the identity of the object being blasted is a mystery because it is too distant for its details to be seen, even in images from the current most powerful telescopes.
The incognito object being rammed may be a massive star, either by itself or with a companion star. The X-rays from C4 could be caused by the collision between the particles in the jet and the gas in a wind blowing away from the star. This collision can generate turbulence, causing a rise in the density of the gas in the jet. This, in turn, ignites the X-ray emission seen with Chandra.
The shape of the “V,” however, is not completely understood. The stream of X-rays trailing behind the source in the bottom arm of the “V” is roughly parallel to the jet, matching the picture of turbulence causing enhanced X-ray emission behind an obstacle in the path of the jet. The other arm of the “V” is harder to explain because it has a large angle to the jet, and astronomers are unsure what could explain that.
This is not the first time astronomers have seen a black hole jet running into other objects in Cen A. There are several other examples where a jet appears to be striking objects — possibly massive stars or gas clouds. However, C4 stands out from these by having the V-shape in X-rays, while other obstacles in the jet’s path produce elliptical blobs in the X-ray image. Chandra is the only X-ray observatory capable of seeing this feature. Astronomers are trying to determine why C4 has this different post-contact appearance, but it could be related to the type of object that the jet is striking or how directly the jet is striking it.
A paper describing these results appears in a recent issue of The Astrophysical Journal. The authors of the study are David Bogensberger (University of Michigan), Jon M. Miller (University of Michigan), Richard Mushotsky (University of Maryland), Niel Brandt (Penn State University), Elias Kammoun (University of Toulouse, France), Abderahmen Zogbhi (University of Maryland), and Ehud Behar (Israel Institute of Technology).
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a series of images focusing on a collision between a jet of matter blasting out of a distant black hole, and a mysterious, incognito object.
At the center of the primary image is a bright white dot, encircled by a hazy purple blue ring tinged with neon blue. This is the black hole at the heart of the galaxy called Centaurus A. Shooting out of the black hole is a stream of ejected matter. This stream, or jet, shoots in two opposite directions. It shoots toward us, widening as it reaches our upper left, and away from us, growing thinner and more faint as it recedes toward the lower right. In the primary image, the jet resembles a trail of hot pink smoke. Other pockets of granular, hot pink gas can be found throughout the image. Here, pink represents low energy X-rays observed by Chandra, purple represents medium energy X-rays, and blue represents high energy X-rays.
Near our lower right, where the jet is at its thinnest, is a distinct pink “V”, its arms opening toward our lower right. This mark is understood to be the result of the jet striking an unidentified object that lay in its path. A labeled version of the image highlights this region, and names the point of the V-shape, the incognito object, C4. A wide view version of the image is composited with optical data.
At the distance of Cen A, the arms of the V-shape appear rather small. In fact, each arm is at least 700 light-years long. The jet itself is 30,000 light-years long. For context, the nearest star to the Sun is about 4 light-years away.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
JPL Director Laurie Leshin, flanked by a model of the Voyager spacecraft and an image of Ed Stone, addresses the audience during the unveiling of the Dr. Edward Stone Exploration Trail on Dec. 6, 2024, at the lab. Ed Stone Memorial Plaque Dedication Ceremony Requester: Susie Woodall Date: 06-DEC-2024 Photographer: Ryan Lannom A series of plaques stretching through the heart of the agency’s Jet Propulsion Laboratory offers highlights of the space explorer’s career and the Voyager mission he led.
Family members, colleagues, and local dignitaries gathered on Friday, Dec. 6, at NASA’s Jet Propulsion Laboratory in Southern California for the unveiling of a memorial honoring Ed Stone, best known as the longtime project scientist of the agency’s Voyager mission. Stone died in June 2024 at age 88 after leading the mission for half a century and leading JPL for a decade.
Stretching through the heart of the lab, the Dr. Edward Stone Exploration Trail traces the arc of Stone’s distinguished career and the long journeys of the twin Voyager space probes. Designed with simple line drawings, 24 disc-shaped plaques along the trail offer career and mission highlights while evoking the Golden Record aboard both spacecraft.
The Dr. Edward Stone Exploration Trail begins in front of the building where Stone served as JPL’s director. NASA/JPL-Caltech Launched in the summer of 1977, Voyager 1 and 2 have since traveled more than 15.4 billion and 12.9 billion miles (24 billion and 20 billion kilometers), respectively — farther than any other human-made object. The plaques trace their trajectories to Jupiter and Saturn as well as their diverging paths, with Voyager 2 heading toward Uranus and Neptune as Voyager 1 made a beeline for interstellar space. Other stops along the trail honor Stone’s work creating the W.M. Keck Observatory in 1985, his appointment as JPL’s director in 1991, and his being honored with the Distinguished Service Award 2013.
“To follow in the footsteps of Ed Stone is to walk the path of an extraordinary person who dedicated his time on Earth to reaching for the stars, and who paved the way for others to do the same,” said Laurie Leshin, director of JPL. “This trail is a testament to Ed’s bold curiosity, visionary leadership, and passion for science that have enabled us to explore farther into the cosmos than ever before. It’s also a reminder of his influence on so many of our endeavors to reach new frontiers in space.”
Embedded in the pavement, 24 additional plaques trace the approximate trajectories of the Voyager spacecraft. The shape and design language of the plaques evoke the design of the Gold Record.NASA/JPL-Caltech Blazing a Trail
Stone’s penchant for walking was one of the topics that came up when members of JPL’s Office of the Director, its DesignLab, and the Voyager team began discussing ways to honor his outsize contributions to JPL and science. From those initial brainstorming sessions came the question, “How can we do something to memorialize him at JPL that gets people to walk?” recalled DesignLab’s graphic manager, Lauren Shapiro.
The distances between the plaques are roughly proportional the distances between the events they highlight, and the team even tried to make flight trajectories of the probes as accurate as possible, given the challenges of avoiding buildings and the like.
Designer Kaelyn Richards relied on the Voyager Golden Record as a guide for the visual language. “I referenced a lot of old scientific diagrams that were made by artists in the ’70s and ’80s, and I used a solar system modeling program to show the exact position of the planets on the day that the ‘Pale Blue Dot’ was taken,” she said, referring to the plaque honoring the famous 1990 image Voyager 1 took of Earth from beyond Neptune.
“Everyone seemed to agree that Voyager was Ed Stone. Yes, he did so much more, but this was really his biggest legacy,” Shapiro said. “So we’re honoring both the mission and the person alongside each other. And they both, in a poetic way, have had very long, incredible lives.”
Voyager 1 and 2 both carry the Golden Record, a 12-inch gold-plated copper disk intended to communicate a story of our world to extraterrestrials with sounds and images that portray the diversity of life and culture on Earth. NASA/JPL-Caltech After retiring as Voyager’s project scientist, Stone returned to teaching and research at Caltech, which manages JPL for NASA.
Before attending the unveiling, Caltech President Thomas Rosenbaum said, “Ed was a whirlwind of activity. I have many good memories of running after Ed in the midst of conversation as he charged across campus. Ed’s ambition, drive, and vision were accompanied by his warmth, humility, and commitment to Caltech and our students. He served as a mentor for generations of scholars who have gone on to be leaders in their fields. He conveyed a curiosity and a thirst for discovery that inspired.”
Stone had joined the Caltech faculty as an assistant professor in 1967 and, from 1983 to 1988, chaired the Division of Physics, Mathematics and Astronomy. He went on to serve as vice president for astronomical facilities from 1988 to 1990 and as vice provost for special projects from 2004 to 2022. In 2023, Caltech established a new faculty position, the Edward C. Stone Professorship.
But there was another academic honor that Stone also cherished: the 2012 naming of the Edward Stone Middle School in his hometown of Burlington, Iowa. A short walk from the plaque marking that milestone is the final stop of the Exploration Trail, its simple inscription reading: “Ed Stone’s leadership and pursuit of scientific knowledge expanded humanity’s understanding of the universe. His legacy lives on through the Voyager mission, and the countless people he has inspired.”
News Media Contacts
Matthew Segal / Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307 / 626-808-2469
matthew.j.segal@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
2024-165
Share
Details
Last Updated Dec 06, 2024 Related Terms
Voyager Program Heliophysics Jet Propulsion Laboratory Voyager 1 Voyager 2 Explore More
4 min read NASA’s C-20A Studies Extreme Weather Events
Article 2 days ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!
This year, we’re giving thanks to you for Doing NASA Science! You and the millions…
Article 1 week ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s IXPE (Imaging X-ray Polarimetry Explorer) has helped astronomers better understand the shapes of structures essential to a black hole – specifically, the disk of material swirling around it, and the shifting plasma region called the corona.
The stellar-mass black hole, part of the binary system Swift J1727.8-1613, was discovered in the summer of 2023 during an unusual brightening event that briefly caused it to outshine nearly all other X-ray sources. It is the first of its kind to be observed by IXPE as it goes through the start, peak, and conclusion of an X-ray outburst like this.
This illustration shows NASA’s Imaging X-ray Polarimetry Explorer (IXPE) spacecraft, at lower left, observing the newly discovered binary system Swift J1727.8-1613 from a distance. At the center is a black hole surrounded by an accretion disk, shown in yellow and orange, and a hot, shifting corona, shown in blue. The black hole is siphoning off gas from its companion star, seen behind the black hole as an orange disk. Jets of fast-moving, superheated particles stream from both poles of the black hole. Author: Marie Novotná Swift J1727 is the subject of a series of new studies published in The Astrophysical Journal and Astronomy & Astrophysics. Scientists say the findings provide new insight into the behavior and evolution of black hole X-ray binary systems.
“This outburst evolved incredibly quickly,” said astrophysicist Alexandra Veledina, a permanent researcher at the University of Turku, Finland. “From our first detection of the outburst, it took Swift J1727 just days to peak. By then, IXPE and numerous other telescopes and instruments were already collecting data. It was exhilarating to observe the outburst all the way through its return to inactivity.”
Until late 2023, Swift J1727 briefly remained brighter than the Crab Nebula, the standard X-ray “candle” used to provide a baseline for units of X-ray brightness. Such outbursts are not unusual among binary star systems, but rarely do they occur so brightly and so close to home – just 8,800 light years from Earth. The binary system was named in honor of the Swift Gamma-ray Burst Mission which initially detected the outburst with its Burst Alert Telescope on Aug. 24, 2023, resulting in the discovery of the black hole.
X-ray binary systems typically include two close-proximity stars at different stages of their lifecycle. When the elder star runs out of fuel, it explodes in a supernova, leaving behind a neutron star, white dwarf, or black hole. In the case of Swift J1727, the powerful gravity of the resulting black hole stripped material from its companion star, heating the material to more than 1.8 million degrees Fahrenheit and producing a vast outpouring of X-rays. This matter formed an accretion disk and can include a superheated corona. At the poles of the black hole, matter also can escape from the binary system in the form of relativistic jets.
IXPE, which has helped NASA and researchers study all these phenomena, specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of such ultra-powerful energy sources, illuminating their inner workings even when they’re too distant for us to see directly.
Because light itself can’t escape their gravity, we can’t see black holes. We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work.
/wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg Alexandra Veledina
NASA Astrophysicist
“Because light itself can’t escape their gravity, we can’t see black holes,” Veledina said. “We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work.”
Two of the IXPE-based studies of Swift J1727, led by Veledina and Adam Ingram, a researcher at Newcastle University in Newcastle-upon-Tyne, England, focused on the first phases of the outburst. During the brief period of months when the source became exceptionally bright, the corona was the main source of observed X-ray radiation.
“IXPE documented polarization of X-ray radiation traveling along the estimated direction of the black hole jet, hence the hot plasma is extended in the accretion disk plane,” Veledina said. “Similar findings were reported in the persistent black hole binary Cygnus X-1, so this finding helps verify that the geometry is the same among short-lived eruptive systems.”
The team further monitored how polarization values changed during Swift J1727’s peak outburst. Those conclusions matched findings simultaneously obtained during studies of other energy bands of electromagnetic radiation.
A third and a fourth study, led by researchers Jiří Svoboda and Jakub Podgorný, both of the Czech Academy of Sciences in Prague, focused on X-ray polarization at the second part of the Swift J1727’s outburst and its return to a highly energetic state several months later. For Podgorný’s previous efforts using IXPE data and black hole simulations, he recently was awarded the Czech Republic’s top national prize for a Ph.D. thesis in the natural sciences.
The polarization data indicated that the geometry of the corona did not change significantly between the beginning and the end of the outburst, even though the system evolved in the meantime and the X-ray brightness dropped dramatically in the later energetic state.
The results represent a significant step forward in our understanding of the changing shapes and structures of accretion disk, corona, and related structures at black holes in general. The study also demonstrates IXPE’s value as a tool for determining how all these elements of the system are connected, as well as its potential to collaborate with other observatories to monitor sudden, dramatic changes in the cosmos.
“Further observations of matter near black holes in binary systems are needed, but the successful first observing campaign of Swift J1727.8–1613 in different states is the best start of a new chapter we could imagine,” said Michal Dovčiak, co-author of the series of papers and leader of the IXPE working group on stellar-mass black holes, who also conducts research at the Czech Academy of Sciences.
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Elizabeth Landau
NASA Headquarters
elizabeth.r.landau@nasa.gov
202-358-0845
Lane Figueroa
NASA’s Marshall Space Flight Center
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Dec 06, 2024 Related Terms
IXPE (Imaging X-ray Polarimetry Explorer) Marshall Science Research & Projects Marshall Space Flight Center Explore More
3 min read NASA, USAID Launch SERVIR Central American Hub
Article 7 mins ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery
By Lauren Perkins When you think of NASA, disasters such as hurricanes may not be…
Article 1 week ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System
The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has captured the most detailed portrait yet of gases flowing within Cygnus X-3, one of the most studied sources in the X-ray sky.
Cygnus X-3 is a binary that pairs a rare type of high-mass star with a compact companion — likely a black hole.
Cygnus X-3 is a high-mass binary consisting of a compact object (likely a black hole) and a hot Wolf-Rayet star. This artist’s concept shows one interpretation of the system. High-resolution X-ray spectroscopy indicates two gas components: a heavy background outflow, or wind, emanating from the massive star and a turbulent structure — perhaps a wake carved into the wind — located close to the orbiting companion. As shown here, a black hole’s gravity captures some of the wind into an accretion disk around it, and the disk’s orbital motion sculpts a path (yellow arc) through the streaming gas. During strong outbursts, the companion emits jets of particles moving near the speed of light, seen here extending above and below the black hole. NASA’s Goddard Space Flight Center “The nature of the massive star is one factor that makes Cygnus X-3 so intriguing,” said Ralf Ballhausen, a postdoctoral associate at the University of Maryland, College Park, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s a Wolf-Rayet star, a type that has evolved to the point where strong outflows called stellar winds strip gas from the star’s surface and drive it outward. The compact object sweeps up and heats some of this gas, causing it to emit X-rays.”
A paper describing the findings, led by Ballhausen, will appear in a future edition of The Astrophysical Journal.
“For XRISM, Cygnus X-3 is a Goldilocks target — its brightness is ‘just right’ in the energy range where XRISM is especially sensitive,” said co-author Timothy Kallman, an astrophysicist at NASA Goddard. “This unusual source has been studied by every X-ray satellite ever flown, so observing it is a kind of rite of passage for new X-ray missions.”
XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed the mission’s microcalorimeter spectrometer instrument, named Resolve.
Observing Cygnus X-3 for 18 hours in late March, Resolve acquired a high-resolution spectrum that allows astronomers to better understand the complex gas dynamics operating there. These include outflowing gas produced by a hot, massive star, its interaction with the compact companion, and a turbulent region that may represent a wake produced by the companion as it orbits through the outrushing gas.
XRISM’s Resolve instrument has captured the most detailed X-ray spectrum yet acquired of Cygnus X-3. Peaks indicate X-rays emitted by ionized gases, and valleys form where the gases absorb X-rays; many lines are also shifted to both higher and lower energies by gas motions. Top: The full Resolve spectrum, from 2 to 8 keV (kiloelectron volts), tracks X-rays with thousands of times the energy of visible light. Some lines are labeled with the names of the elements that produced them, such as sulfur, argon, and calcium, along with Roman numerals that refer to the number of electrons these atoms have lost. Bottom: A zoom into a region of the spectrum often dominated by features produced by transitions in the innermost electron shell (K shell) of iron atoms. These features form when the atoms interact with high-energy X-rays or electrons and respond by emitting a photon at energies between 6.4 and 7 keV. These details, clearly visible for the first time with XRISM’s Resolve instrument, will help astronomers refine their understanding of this unusual system. JAXA/NASA/XRISM Collaboration In Cygnus X-3, the star and compact object are so close they complete an orbit in just 4.8 hours. The binary is thought to lie about 32,000 light-years away in the direction of the northern constellation Cygnus.
While thick dust clouds in our galaxy’s central plane obscure any visible light from Cygnus X-3, the binary has been studied in radio, infrared, and gamma-ray light, as well as in X-rays.
The system is immersed in the star’s streaming gas, which is illuminated and ionized by X-rays from the compact companion. The gas both emits and absorbs X-rays, and many of the spectrum’s prominent peaks and valleys incorporate both aspects. Yet a simple attempt at understanding the spectrum comes up short because some of the features appear to be in the wrong place.
That’s because the rapid motion of the gas displaces these features from their normal laboratory energies due to the Doppler effect. Absorption valleys typically shift up to higher energies, indicating gas moving toward us at speeds of up to 930,000 mph (1.5 million kph). Emission peaks shift down to lower energies, indicating gas moving away from us at slower speeds.
Some spectral features displayed much stronger absorption valleys than emission peaks. The reason for this imbalance, the team concludes, is that the dynamics of the stellar wind allow the moving gas to absorb a broader range of X-ray energies emitted by the companion. The detail of the XRISM spectrum, particularly at higher energies rich in features produced by ionized iron atoms, allowed the scientists to disentangle these effects.
“A key to acquiring this detail was XRISM’s ability to monitor the system over the course of several orbits,” said Brian Williams, NASA’s project scientist for the mission at Goddard. “There’s much more to explore in this spectrum, and ultimately we hope it will help us determine if Cygnus X-3’s compact object is indeed a black hole.”
XRISM is a collaborative mission between JAXA and NASA, with participation by ESA. NASA’s contribution includes science participation from CSA (Canadian Space Agency).
Download additional images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Nov 25, 2024 Related Terms
Black Holes Electromagnetic Spectrum Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Stars Stellar-mass Black Holes The Universe X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.