Members Can Post Anonymously On This Site
NASA’s Hidden Figures Honored with Congressional Gold Medals
-
Similar Topics
-
By European Space Agency
For decades, satellites have played a crucial role in our understanding of the remote polar regions. The ongoing loss of Antarctic ice, owing to the climate crisis, is, sadly, no longer surprising. However, satellites do more than just track the accelerating flow of glaciers towards the ocean and measure ice thickness.
New research highlights how ESA’s CryoSat mission has been used to uncover the hidden impact of subglacial lakes – vast reservoirs of water buried deep under the ice – that can suddenly drain into the ocean in dramatic outbursts and affect ice loss.
View the full article
-
By NASA
Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
Kaye Honored with Pecora Award
Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
Image. Recipient of the Pecora Individual Award: Jack A. Kaye, PhD. Image credit: Sources/Usage: Public Domain. View Media Details Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, has received the Pecora award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels.
The William T. Pecora Award, presented annually by the U.S. Geological Survey (USGS) and NASA, honors individuals and groups who have made outstanding contributions to the field of remote sensing – advancing Earth observation and benefiting society.
As Associate Director for research since 1999, Kaye is responsible for the research and data analysis programs for Earth System Science. He has contributed to national and international groups for decades, by serving as the NASA principal on the Subcommittee on Global Change Research in the U.S. Global Change Research Program and chairing the World Meteorological Organization Expert Team on Satellite Systems. Kaye has also served as a member of the Steering Committee for the Global Climate Observing System and on the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable. He also serves as NASA’s representative to the Subcommittee on Ocean Science and Technology. Kaye has devoted considerable energy toward developing early career researchers, stimulating the inclusion of a more diverse student population in science, technology, engineering, and mathematics.
Kaye has received numerous NASA awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. He was named a Fellow by the American Meteorological Society (AMS) in 2010 and by the American Association for the Advancement of Science (AAAS) in 2014. Kaye was also elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018).
Kaye received a Bachelor of Science degree from Adelphi University in 1976 and a Ph.D. from the California Institute of Technology in 1982. He held a post-doctoral research associateship at the U.S. Naval Research Laboratory. Kaye has published more than 50 refereed papers and contributed to numerous reports, books, and encyclopedias.
Kaye is joined in this honor by Chuanmin Hu, Professor of optical oceanography at the University of South Florida where he leads the Optical Oceanography Lab. Hu received the Pecora Group award for his lab’s groundbreaking advancements in remote sensing and real-world applications, including the Sargassum Watch System. The William T. Pecora Award honors the memory of William T. Pecora, former Director of USGS and Under Secretary of the Interior. His early vision and support helped establish what we know today as the Landsat satellite program.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Mar 20, 2025 Related Terms
Earth Science View the full article
-
By NASA
The National Academy of Engineering (NAE) has elected three new members with NASA affiliations. Two employees and one retiree from three different NASA centers around the country were awarded the honor on Feb. 7.
Election to the NAE is among the highest professional distinctions accorded to an engineer. Individuals in the newly elected class will be formally inducted during the NAE’s annual meeting Oct. 1.
Academy membership honors those who have made outstanding contributions to “engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature” and to ‘the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.”
Christine Mann Darden, director (retired), Strategic Communications Office, NASA Langley Research Center, Hampton, Virginia.u003cstrongu003eu003cemu003eCredits: NASAu003c/emu003eu003c/strongu003e Christine Mann Darden, director (retired), Strategic Communications Office, NASA Langley Research Center, Hampton, Virginia, was awarded for pioneering research in supersonic flight technologies and leadership in advancing aerodynamics design to produce low-boom sonic effects. She is internationally known for her research into supersonic aircraft noise, especially sonic boom reduction, and recognized for her groundbreaking achievement as the first African American woman at NASA Langley to be appointed to the top management rank of Senior Executive Service. She is equally known for her efforts to inspire and educate generations of aerospace scientists and engineers.
Christa D. Peters-Lidard, deputy director, Science and Exploration, NASA Goddard Space Flight Center, Greenbelt, Maryland.u003cstrongu003eu003cemu003eCredits: NASA Office of the Chief Information Officeru003c/emu003eu003c/strongu003e Christa D. Peters-Lidard, director, Science and Exploration, NASA Goddard Space Flight Center, Greenbelt, Maryland, was honored for contributions to understanding land-atmosphere interactions, soil moisture monitoring and modeling, and leadership in Earth system modeling. Her research interests include the application of high-performance computing and communications technologies in Earth system modeling, for which her Land Information System team was awarded the 2005 NASA Software of the Year Award.
Vanessa E. Wyche, director, NASA Johnson Space Center, Houston.u003cstrongu003eu003cemu003eCredits: NASAu003c/emu003eu003c/strongu003e Vanessa E. Wyche, director, NASA’s Johnson Space Center, Houston, received the honor for leadership of NASA Johnson, enabling a commercial low-Earth orbit space economy and future Moon and Mars missions. She is responsible for a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, and mission control. Wyche oversees commercialization of low-Earth orbit – ensuring commercially provided destinations to continue research there following transition from the International Space Station in 2030. Additionally, she leads Johnson’s role in exploring the Moon and Mars with NASA’s Artemis spacecraft, including surface system capabilities for human and commercial robotic missions, and partners with academia, industry, and international community to establish a sustainable lunar economy.
Rob Gutro
NASA’s Goddard Space Flight Center
Robert.j.gutro@nasa.gov
L. Eileen Erickson / Kim Case
National Academy of Engineering
lerickson@nae.edu / KCase@nae.edu
Explore More
8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
Article 14 mins ago 5 min read Mark SubbaRao Brings Data to Life Through Art
Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
Article 14 mins ago Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center Johnson Space Center Langley Research Center People of Goddard View the full article
-
By NASA
Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 6 Min Read NASA’s Hubble Traces Hidden History of Andromeda Galaxy
This photomosaic of the Andromeda galaxy is the largest ever assembled from Hubble observations. Credits:
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI) In the years following the launch of NASA’s Hubble Space Telescope, astronomers have tallied over 1 trillion galaxies in the universe. But only one galaxy stands out as the most important nearby stellar island to our Milky Way — the magnificent Andromeda galaxy (Messier 31). It can be seen with the naked eye on a very clear autumn night as a faint cigar-shaped object roughly the apparent angular diameter of our Moon.
A century ago, Edwin Hubble first established that this so-called “spiral nebula” was actually very far outside our own Milky Way galaxy — at a distance of approximately 2.5 million light-years or roughly 25 Milky Way diameters. Prior to that, astronomers had long thought that the Milky way encompassed the entire universe. Overnight, Hubble’s discovery turned cosmology upside down by unveiling an infinitely grander universe.
Now, a century later, the space telescope named for Hubble has accomplished the most comprehensive survey of this enticing empire of stars. The Hubble telescope is yielding new clues to the evolutionary history of Andromeda, and it looks markedly different from the Milky Way’s history.
This is largest photomosaic ever assembled from Hubble Space Telescope observations. It is a panoramic view of the neighboring Andromeda galaxy, located 2.5 million light-years away. It took over 10 years to make this vast and colorful portrait of the galaxy, requiring over 600 Hubble overlapping snapshots that were challenging to stitch together. The galaxy is so close to us, that in angular size it is six times the apparent diameter of the full Moon, and can be seen with the unaided eye. For Hubble’s pinpoint view, that’s a lot of celestial real estate to cover. This stunning, colorful mosaic captures the glow of 200 million stars. That’s still a fraction of Andromeda’s population. And the stars are spread across about 2.5 billion pixels. The detailed look at the resolved stars will help astronomers piece together the galaxy’s past history that includes mergers with smaller satellite galaxies. NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)
Download this image (10,552 x 2,468)(9 MB)
Download this image (42,208 x 9,870)(203 MB)
Without Andromeda as a proxy for spiral galaxies in the universe at large, astronomers would know much less about the structure and evolution of our own Milky Way. That’s because we are embedded inside the Milky Way. This is like trying to understand the layout of New York City by standing in the middle of Central Park.
“With Hubble we can get into enormous detail about what’s happening on a holistic scale across the entire disk of the galaxy. You can’t do that with any other large galaxy,” said principal investigator Ben Williams of the University of Washington. Hubble’s sharp imaging capabilities can resolve more than 200 million stars in the Andromeda galaxy, detecting only stars brighter than our Sun. They look like grains of sand across the beach. But that’s just the tip of the iceberg. Andromeda’s total population is estimated to be 1 trillion stars, with many less massive stars falling below Hubble’s sensitivity limit.
Photographing Andromeda was a herculean task because the galaxy is a much bigger target on the sky than the galaxies Hubble routinely observes, which are often billions of light-years away. The full mosaic was carried out under two Hubble programs. In total, it required over 1,000 Hubble orbits, spanning more than a decade.
This panorama started with the Panchromatic Hubble Andromeda Treasury (PHAT) program about a decade ago. Images were obtained at near-ultraviolet, visible, and near-infrared wavelengths using the Advanced Camera for Surveys and the Wide Field Camera 3 aboard Hubble to photograph the northern half of Andromeda.
This is the largest photomosaic ever made by the Hubble Space Telescope. The target is the vast Andromeda galaxy that is only 2.5 million light-years from Earth, making it the nearest galaxy to our own Milky Way. Andromeda is seen almost edge-on, tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate overlapping fields of view taken over 10 years of Hubble observing — a challenge to stitch together over such a large area. The mosaic image is made up of at least 2.5 billion pixels. Hubble resolves an estimated 200 million stars that are hotter than our Sun, but still a fraction of the galaxy’s total estimated stellar population. Interesting regions include: (a) Clusters of bright blue stars embedded within the galaxy, background galaxies seen much farther away, and photo-bombing by a couple bright foreground stars that are actually inside our Milky Way; (b) NGC 206 the most conspicuous star cloud in Andromeda; (c) A young cluster of blue newborn stars; (d) The satellite galaxy M32, that may be the residual core of a galaxy that once collided with Andromeda; (e) Dark dust lanes across myriad stars.
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)
Download this image (2,000 x 1,125)(1.5 MB)
Download this image (7,680 x 4,320)(16 MB)
This program was followed up by the Panchromatic Hubble Andromeda Southern Treasury (PHAST), recently published in The Astrophysical Journal and led by Zhuo Chen at the University of Washington, which added images of approximately 100 million stars in the southern half of Andromeda. This region is structurally unique and more sensitive to the galaxy’s merger history than the northern disk mapped by the PHAT survey.
The combined programs collectively cover the entire disk of Andromeda, which is seen almost edge-on — tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate fields of view. The mosaic image is made up of at least 2.5 billion pixels.
The complementary Hubble survey programs provide information about the age, heavy-element abundance, and stellar masses inside Andromeda. This will allow astronomers to distinguish between competing scenarios where Andromeda merged with one or more galaxies. Hubble’s detailed measurements constrain models of Andromeda’s merger history and disk evolution.
A Galactic ‘Train Wreck’
Though the Milky Way and Andromeda formed presumably around the same time many billions of years ago, observational evidence shows that they have very different evolutionary histories, despite growing up in the same cosmological neighborhood. Andromeda seems to be more highly populated with younger stars and unusual features like coherent streams of stars, say researchers. This implies it has a more active recent star-formation and interaction history than the Milky Way.
“Andromeda’s a train wreck. It looks like it has been through some kind of event that caused it to form a lot of stars and then just shut down,” said Daniel Weisz at the University of California, Berkeley. “This was probably due to a collision with another galaxy in the neighborhood.”
A possible culprit is the compact satellite galaxy Messier 32, which resembles the stripped-down core of a once-spiral galaxy that may have interacted with Andromeda in the past. Computer simulations suggest that when a close encounter with another galaxy uses up all the available interstellar gas, star formation subsides.
The Andromeda Galaxy, our closest galactic neighbor, holds over 1 trillion stars and has been a key to unlocking the secrets of the universe. Thanks to NASA’s Hubble Space Telescope, we’re now seeing Andromeda in stunning new detail, revealing its dynamic history and unique structure.
Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris
Download this video
“Andromeda looks like a transitional type of galaxy that’s between a star-forming spiral and a sort of elliptical galaxy dominated by aging red stars,” said Weisz. “We can tell it’s got this big central bulge of older stars and a star-forming disk that’s not as active as you might expect given the galaxy’s mass.”
“This detailed look at the resolved stars will help us to piece together the galaxy’s past merger and interaction history,” added Williams.
Hubble’s new findings will support future observations by NASA’s James Webb Space Telescope and the upcoming Nancy Grace Roman Space Telescope. Essentially a wide-angle version of Hubble (with the same sized mirror), Roman will capture the equivalent of at least 100 high-resolution Hubble images in a single exposure. These observations will complement and extend Hubble’s huge dataset.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Explore More
Explore the Night Sky: Messier 31
Hubble’s High-Definition Panoramic View of the Andromeda Galaxy
NASA’s Hubble Finds Giant Halo Around the Andromeda Galaxy
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard
Space Telescope Science Institute, Baltimore, MD
Share
Details
Last Updated Jan 16, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Andromeda Galaxy Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science
Hubble’s Night Sky Challenge
Hubble Images
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.