Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

16 min read

ICESat-2 Hosts Third Applications Workshop

Introduction

The NASA Ice, Cloud, and land Elevation Satellite-2 mission (ICESat-2), launched September 15, 2018, continues the first ICESat mission, delivering invaluable global altimetry data. Notwithstanding its icy acronym, ICESat-2 can do more than measure ice – in fact, the expanded acronym hints at these wider applications. From vegetation to inland surface water to bathymetry, ICESat-2 has emerged as a more versatile mission than originally planned, thanks in part to the ingenuity of research scientists, the Science Team (ST), and users of the data – see Figure 1.

IceSat-2 figure 1
Figure 1. A word cloud designed to highlight terms that occur most frequently in all ICESat-2 publications since 2018. The larger the word, the more often it is used.
Figure credit: Aimee Neeley

ICESat-2 was among the first NASA missions to develop an applications program that engages both scientists and potential users of the science data to accelerate user uptake. Throughout this program, ICESat-2 has demonstrated the value of Earth Observation data to end users, stakeholders, and decision makers. The ICESat-2 Early Adopter (EA; pre-launch) program, now the Applied User program (post-launch), was created to “promote applications research to provide a fundamental understanding of how ICESat-2 data products can be scaled and integrated into organizations, policy, business, and management activities to improve decision making efforts.” This article summarizes the workshop objectives met through plenary talks, lightning talks, an applied user panel, and a breakout session. The ICESat-2 Applications page contains more about the ICESat-2 Applications Program.

Motivation and Objectives

To meet Applications Program initiatives, the ICESat-2 Applications Team hosted its third Applications workshop June 3–4, 2024 at NASA’s Goddard Space Flight Center (GSFC) in a hybrid environment. A total of 113 participants registered for the workshop, representing multiple government agencies, including NASA Centers, non-profit organizations, and academic organizations – see Figure 2. Approximately 20 individuals attended the workshop in person with the majority participating online through the Webex platform. This workshop provided the space to foster collaboration and to encourage the conceptualization of applications not yet exploited.

IceSat-2 figure 2
Figure 2.  A ‘donut’ plot showing the proportion of ICESat-2 Applications Workshop attendees identified by institution. This information was provided during the online registration process.
Figure credit: Aimee Neeley

The objectives of the Applications workshop were to:

  1. provide an overview of the mission status, data products, and support services from the National Snow and Ice Data Center (NSIDC);
  2. build partnerships among applied users, data producers, and end users;
  3. foster synergies with all participants, decision makers, and satellite operators;
  4. identify new potential applications or products from ICESat-2;
  5. review available tools for extracting ICESat-2 data; and
  6. understand the challenges faced by applied users, data users, and end users, and identify solutions.

The remainder of this article will summarize the meeting highlights. Rather than give a strict chronological survey, the report is organized around the meeting objectives listed above. Readers interested in more details can find the full agenda and slide decks from individual presentations mentioned in this summary on the ICESat-2 Workshop website.

Workshop Overview and Structure

The agenda of the 2024 ICESat-2 Applications workshop was intended to bring together end-users, including ICESat-2 applications developers, satellite operators, and decision makers from government and nongovernmental entities to discuss the current state and future needs of the community – see Figure 3.

On the morning of the first day, the workshop participants contributed to a plenary session and ICESat-2 data tool demonstrations. These presentations were intended to provide a broad overview of the ICESat-2 mission, data, science, and applications. Plenary talks during the afternoon session provided an overview of the Earth Science-to-Action initiative and measuring impacts of science. The afternoon also included lightning talks from participants and an Applied User Panel. The second day consisted of a plenary presentation and more lightning talks from participants. The workshop ended with a thematic breakout session with pre-constructed topics and a report out to create a forum for direct interaction between participants.

IceSat-2 figure 3
Figure 3. Graphic showing the different levels of data available from the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission.
Figure credit: NASA, adapted from the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center’s  ICESat-2 page

Objective 1: Provide an overview of the status of the mission and current data products and support services from the NSIDC.

To fulfill the first meeting objective, the workshop included a series of overview presentations given by ICESat-2 team members about the status of the ICESat-2 mission and its data products, as well as a review of the NASA Applied Sciences Program.

Aimee Neeley [NASA Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] and Molly Brown [GSFC/University of Maryland—ICESat-2 Mission Applications Scientist] served as cohosts for the event. Neeley opened the first day with a brief overview of workshop goals, logistics, and the agenda. On the second day she gave a brief overview of the agenda for the day and opened it up for questions.

Thomas Neumann [GSFC—ICESat-2 Project Scientist and Deputy Director of Earth Sciences Division] provided an overview of the ICESat-2 measurement concepts, which includes activity of GPS positioning, pointing angle, altimetry measurements, and ground processing. He continued with an overview of the Advanced Topographic Laser Altimeter System (ATLAS) instrument, the wavelength and spatial resolution of the lasers, and the distributed data products. Neumann presented the mission outlook, with an expected lifespan until December 2035.

Walter Meier [University of Colorado, Boulder (UC, Boulder)—NSIDC DAAC Scientist] provided an overview of ICESat-2 data tools and services. He walked the audience through the ICESat-2 data website, as well as the instructional guides that are available for all the tools and services. Meier provided an overview of ICESat-2 standard data products – see Figure 3. Most of the products have a ~45-day latency while quick look data sets have an ~3-day latency. Future data sets include ATL24 and ATL25 and quick look data sets for ATL03, ATL20, and ATL25. Next, he described webinars and tutorials, access tools, and customization services for different users and workflows, including graphical user interfaces and programmatic tools in Earthaccess and the NSIDC website.

Helen Amanda Fricker [Scripps Institution of Oceanography, University of California (UC), San Diego—ICESat-2 ST Leader and Professor] provided an overview of the ST members and ST goals. Fricker described the ST goals to: 1) provide coordination between the team, project science office, and NASA headquarters; 2) use science talks, posters, and social events to stimulate collaboration within the ST and across disciplines; and 3) maintain the visibility of the ICESat-2 mission through publications, press releases, white papers, open science, and synergies with other missions. Next, Fricker shared the list of ST members that can be found on the ICESat-2 website. She concluded with an overview of a recent publication by Lori Magruder [University of Texas, Austin] and coauthors published in Nature Reviews.

Stephanie Schollaert Uz [NASA GSFC—Applied Sciences Manager] provided an overview of the NASA Applied Science Program, including the current NASA Earth Science Satellite missions that are monitoring Earth systems. The NASA Applied Science Programs “tackle challenges on our home planet in areas for which Earth science information can respond to the urgent needs of our time.” Earth science data products are used to “inform decisions and actions on management, policy and business.” Uz provided examples of applications using Earth science data, including economic activity, active fire mapping, food security, and monitoring air quality – see Figure 4.

IceSat-2 figure 4
Figure 4. Near real-time active fire mapping as well as air quality monitoring and forecasting are available via NASA’s Fire Information for Resource Management System (FIRMS).
Figure credit: FIRMS U.S./Canada

Molly E. Brown [University of Maryland—ICESat-2 Mission Applications Scientist] began her presentation by defining the term application in the context of this workshop, which includes “innovative uses of mission data products in decision-making activities for societal benefit.” Brown stated that the ICESat-2 Mission Applications program “works to bring our data products into areas where they can help inform policy or decisions that benefit the public.” End users include the private sector, academia, and government agencies. Brown described the benefits of the program and strategies to extend ICESat-2 to new communities – see Figure 5. Brown concluded with an overview of recent publications and new research efforts to assess the impact of ICESat-2 data.

IceSat-2 figure 5
Figure 5. Strategies to extend ICESat-2 to new communities through activities and trainings such as those hosted by the Applied Remote Sensing Training (ARSET) program.
Figure credit: Molly Brown

Mike Jasinski [NASA GSFC, Hydrological Sciences Laboratory—Assistant Chief for Science] provided an overview of ICESat-2 inland water standard and quick look data products, ATL13QL and ATL22QL. ICESat-2 covers approximately one million lakes each year. Jasinski also listed application areas for water resources decision support, including river elevation and discharge, lake and reservoir water balance and management, and validation of Surface Water and Ocean Topography (SWOT) data. He provided metrics for each data product and quick look product and the advantages and disadvantages of ATL13 and ATL22 data products.

Mary D. Ari [Centers for Disease Control and Prevention, Office of Science—Senior Advisor for Science] provided an overview of the Science Impact Framework (SIF). Ari explained that our partners and public need “evidence to support practice or policy or decision making, accountability for public finds, and research focus to advocate for research priority.” A major goal is to translate findings into practice or action. Next, she presented ways by which impact can be measured, including bibliometrics (quantitative) and value (qualitative). Ari further explained the Science Impact Framework (SIF), which includes five domains of scientific influence: disseminating science, creating awareness, catalyzing action, effecting change, and shaping the future – see Figure 6.

IceSat-2 figure 6
Figure 6. The Science Impact Framework, which allows the impact of scientific work to be quantified and to determine if the science we produce is being put into action.
Figure credit: Mary Ari

Woody Turner [NASA Headquarters—ICESat-2 Program Applications Lead] provided an overview of NASA’s Earth Science to Action Strategy. Turner explained that NASA’s Earth Science to Action strategy is integral to the Earth Science Division’s 2024–2034 strategic plan. The overall strategy has two objectives: 1) observe, monitor, and understand the Earth System and 2) deliver trusted information to drive Earth resilience activities. He also summarized the “three key pillars” for this new Earth Action paradigm to 1) be user centered, 2) build bridges between research, technology, flight, data, and Earth Action elements, and 3) scale up existing efforts to get NASA data into the hands of end users. Lastly, Turner listed NASA’s core values, including safety, integrity, inclusion, teamwork, excellence, trustworthiness, innovation, and collaboration.

Objective 2: Review available tools for extracting ICESat-2 data for a diverse community.

To achieve this objective, the meeting included a series of presentations in which each speaker described a different tool that is being used to download and analyze ICESat-2 data.

Jessica Scheick [University of New Hampshire] provided an overview of a set of Python tools, named icepyx, that can be used to obtain and manipulate ICESat-2 data. Scheick, who developed icepyx, described how the tools address challenges with ICESat-2 data. Lastly, she performed a live demonstration of icepyx.

Tyler Sutterley [Applied Physics Laboratory/University of Washington] presented a live demonstration of Sliderule, an ICESat-2 plugin module that uses an application programming interface (API) to “query a set of ATL03 input granules for photon heights and locations based on a set of photon-input parameters that select the geographic and temporal extent of the request.”

Joanna D. Millstein [Colorado School of Mines] provided an overview of CryoCloud, which is a “JupyterHub built for NASA cryosphere communities in collaboration with 2i2c.” The goal of CryoCloud is to create a “simple and cost-effective managed cloud environment for training and transitioning new users to cloud workflows and determining community best practices.” CryoCloud makes it possible to “process data faster, minimize downloading and democratize science.” The CryoCloud GitHub provides access to a Slack channel, trainings and tutorials, and community office hours.

Mikala Beig [UC, Boulder—NSIDC User Services] provided and overview of OpenAltimetry, a platform for visualizing and downloading surface elevation data from ICESat and ICESat-2. OpenAltimetry was developed to alleviate the challenges faced by researchers, including the “steep learning curves and heavy demands on computational resources” necessary to download and manipulate large volumes of data. The strengths of OpenAltimetry include fostering user engagement, lowering technical hurdles for visualizing data, and allowing deeper data exploration. Lastly, Beig demonstrated the platform for the audience – see Figure 7.

IceSat-2 figure 7
Figure 7. Searching ICESat-2 tracks in OpenAltimetry, a map-based data visualization and discovery tool for altimetry data.
Figure credit: Mikala Beig

Objectives 3 and 4: Foster synergies between all participants; Identify new potential applications or products from ATLAS data not currently under investigation.

To meet these two meeting objectives, workshop organizers scheduled a round of lightning talks, where a series of presenters gave five-minute presentations on their research or activities. The talks are distilled below. The reader is directed online to find formal presentation titles and additional information. There was also an applied user panel and a breakout session to facilitate synergies between participants and identify new applications.

Younghyun Koo [Lehigh University/ Cooperative Institute for Research in Environmental Science (CIRES)] described a method to filter landfast ice (or sea ice “fastened” to the coastline) for accurate examination of thermodynamic and dynamic sea ice features using the ICESat-2 ATL10 data product – see Figure 8.

Chandana Gangodagamage [OeilSatPrincipal Investigator] described the company’s efforts to track freshwater in the Congo River for the purposes of water resources management and other water-related applications that require river bathymetry data.

Daniel Scherer [Technischen Universität München (TUM), Germany] provided an overview of the ICESat-2 River Surface Slope (IRIS), a global reach-scale water surface slope dataset that provides average and extreme water slopes from ICESat-2 observations. The data can be dowloaded from Zenodo.

Louise Croneborg-Jones [Water In SightChief Executive Officer] described her company’s effort to use satellite data and mobile and cloud technology to digitize river and rainfall observation at scale in Malawi. Water In Sight has emphasized getting local communities involved in monitoring water resources to increase observations of water levels for conservation.

Ravindra Duddu [Vanderbilt University] provided an overview on a project called Modeling Antarctic Iceshelf Calving and Stability (MAGICS), which involves using computation, data, and machine learning to map the rift and crevasse configurations of ice shelves in Antarctica to better understand calving events.

Shawn Serbin [GSFC] discussed use of harmonized above ground products from ICESat-2 and other earth observing platforms, including Global Ecosystem Dynamics Investigation (GEDI), Soil Moisture Active Passive (SMAP), and Moderate Resolution Imaging Spectroradiometer (MODIS), for terrestrial ecosystem carbon cycle reanalysis and near-term, iterative forecasting for North America and the globe.

Wengi Ni-Meister [Hunter College of the City University of New York—ICESat-2 Early Adopter] summarized an effort to retrieve canopy and background reflectivity ratio from ICESat-2 data and use it for the retrieval of vegetation cover and snow distribution in boreal forests.

Morgaine McKibben [GSFC–Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) Applications Lead] provided an overview of NASA’s PACE mission, suggesting possible synergies between ICESat-2 and PACE with the intent of opening the door for further discussion on collaboration between the two missions.  (To learn more about planned applications for PACE, see  Preparing for Launch and Assessing User Readiness: The 2023 PACE Applications Workshop. (Also published in The Earth Observer, Nov–Dec 2023, 35:6, 25–32.)

Anthony Campbell [GSFC/ University of Maryland, Baltimore County] discussed his group’s research into using ICESat-2 data to monitor changes in coastal wetland migration, including coastal elevation and canopy height.

Brian A Campbell [NASA’s Wallops Flight Facility (WFF)—ICESat-2 Mission Education Lead] described the Global Learning and Observations to Benefit the Environment (GLOBE) program’s network of citizen scientists who collect several different kinds of data using the GLOBE Observer app. He highlighted one data type with particular relevance to ICESat-2. GLOBE Trees – see Figure 8 – equips citizen scientists with the tools to take tree height measurements using their mobile devices. These observations could then be compared to data from NASA satellite missions.

IceSat-2 figure 8
Figure 8. NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) has developed an app called GLOBE Trees that allows users take measurements of tree height data using a mobile device. Those data can then be uploaded, and scientists can use them to validate satellite tree height measurement (e.g., from ICESat-2/ATLAS).
Figure credit: Brian Campbell

Caio Hamamura [University of Florida/School of Forest, Fisheries & Geomatics Sciences—Postdoctoral Associate] summarized a literature review his team had conducted of studies using ICESat-2 data for land and vegetation applications as well as results of an assessment of the current capability and limitations of ICESat-2 data for land and vegetation applications – see Figure 9.

ICESat-2 figure 9
Figure 9. Illustration of the ATL18 canopy height product at 1 km (~0.6 mi) spatial resolution at the global scale. The height values represent the median of all ATL18 height estimates within a given grid size of 1 km.
Figure credit: Jordan Borak and Ciao Hamamura

Jacob Comer [Cultural Site Research and Management Foundation] summarized results from an evaluation of the use of ICESat-2 data for archaeological prospection and documentation of archaeological sites – particularly in the Federal States of Micronesia.

Juradana M. Iqrah [University of Texas at San Antonio] described her group’s effort to obtain high resolution sea ice classification and freeboard information from ICESat-2 ATL03 observations to understand the impact of global warming on the melting and retreat of polar sea ice cover.

Michael MacFerrin [National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI)—Coastal Digital Elevation (DEM) Model Team] provided an overview of the NOAA/CIRES ICESat-2 Validation of Elevations Reporting Tool (IVERT) tool, which is used to generate land-based validation statistics of digital elevation models (DEM) anywhere in the word using the ATL03 and ATL08 datasets – see Figure 10.

eo-figure10.png?w=1440
Figure 10. Digital Elevation Model output before and after Hurricane Michael in Florida, October 2018.
Figure credit: Michael MacFerrin

Gretchen Imahori [NOAA National Geodetic Survey, Remote Sensing Division] presented an overview of satellite derived bathymetry using ICESat-2 data, including the new Level 3 (L3) bathymetry data product (ATL24) that will be available later in 2024 – see Figure 11.

ICESat-2 figure 11
Figure 11. Bathymetry data from ICESat-2 have been used across a wide variety of morphologies [some of which are illustrated in the photos above] and disciplines. 
Figure credit: Gretchen Imahori and the ICESat-2 bathymetry working group

Objectives 5 and 6: Understand the challenges faced by applied, data users, and end users and identify solutions. Build partnerships between applied users, data producers, and end users.

To achieve these two objectives, planners organized an applied user panel and a breakout session as means to foster conversation among participants. The applied user panel consisted of five panelists– three participating virtually and two in-person. The presenters in the session shared their responses to three prepared discussion prompts: 1) an introduction of ICESat-2 data products; 2) use of ICESat-2 data products for their application; and 3) potential data latency impacts. The conversation was brief, but it provided a unique opportunity to hear from experienced applied users.

A breakout session consisted of pre-planned discussion prompts through two virtual breakout groups and one in-person group. Group One discussed questions that covered examination of ice crevassing and rifting, community tools for shallow water mapping, and slope measurement bias and uncertainties. Group Two discussed a variety of current and potential surface water applications, identified challenges using ICEat-2 data, and developed suggestions to increase the accessibility and usability of ICESat-2 data products. Group Three covered a gamut of topics, including potential products for Alaskan and Canadian communities, increased accessibility to products, and applications through central cloud storage systems, central repositories and detailed documentation, and the desire for future topic-specific workshops and focus sessions.

Conclusion

The 2024 NASA ICESat-2 Applications Workshop was the third in a series of workshops – with the first workshop occurring in 2012, six years prior to launch. The EA program was transitioned to the Applied User program, which deployed a post-launch program per the NASA Early Adopter Handbook “that acts as a continuation of the Early Adopter program to engage with Communities of Practice and Potential.” This workshop provided the space to foster collaboration and conceptualization of applications not yet exploited that may be developed using ICESat-2 data products. The workshop met its objectives and created an environment that fostered collaboration between participants. The workshop was a success, and participants requested another one focused on a thematic topic. Updates, future workshops, and other events will be posted on the ICESat-2 ‘Get Involved’ page.

Aimee Renee Neeley
NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc.

aimee.neeley@nasa.gov

Share

Details

Last Updated
Sep 17, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      As 1969, an historic year that saw not just one but two successful human lunar landings, drew to a close, NASA continued preparations for its planned third Moon landing mission, Apollo 13, then scheduled for launch on March 12, 1970. The Apollo 13 prime crew of Commander James A. Lovell, Command Module Pilot (CMP) Thomas K. “Ken” Mattingly, and Lunar Module Pilot (LMP) Fred W. Haise, and their backups John W. Young, John L. “Jack” Swigert, and Charles M. Duke, continued intensive training for the mission. NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, favored by geologists because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. The Apollo 13 Saturn V rolled out to its launch pad.

      Apollo 11
      The Apollo 11 astronauts meet Canadian Prime Minister Pierre Trudeau, left, on Parliament Hill in Ottawa. Image courtesy of The Canadian Press. The Apollo 11 astronauts meet with Québec premier ministre Jean Lesage in Montréal. Image courtesy of Archives de la Ville de Montreal. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrinhad returned from their Giantstep Presidential goodwill tour on Nov. 5, 1969. Due to scheduling conflicts, a visit to Canada could not be included in the same time frame as the rest of the tour, so the astronauts made a special trip to Ottawa and Montreal on Dec. 2 and 3, meeting with local officials.
      Apollo 11 astronaut Neil A. Armstrong, left, and comedian Bob Hope perform for the troops in Korat, Thailand. Armstrong, in blue flight suit, shakes hands with servicemen in Long Binh, South Vietnam. Armstrong, left, and Hope entertain the crowd in Cu Chi, South Vietnam. Armstrong joined famed comedian Bob Hope’s USO Christmas tour in December 1969. He participated in several shows at venues in South Vietnam, Thailand, and Guam, kidding around with Hope and answering questions from the assembled service members. He received standing ovations and spent much time shaking hands with the troops. The USO troupe also visited the hospital ship U.S.S. Sanctuary (AH-17) stationed in the South China Sea.

      Apollo 12
      For the first time in nearly four weeks, on Dec. 10, Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean stepped out into sunshine and breathed unfiltered air. Since their launch on Nov. 14, 1969, the trio had traveled inside their spacecraft for 10 days on their mission to the Moon and back, wore respirators during their recovery in the Pacific Ocean, stayed in the Mobile Quarantine Facility during the trip from the prime recovery ship U.S.S. Hornet back to Houston, and lived in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Like the Apollo 11 crew before them, Conrad, Gordon, and Bean exhibited no symptoms of any infections with lunar microorganisms and managers declared them fit to be released from quarantine. MSC Director Robert L. Gilruth, other managers, and a crowd of well-wishers greeted Conrad, Gordon, and Bean.
      Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Charles “Pete” Conrad as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Richard F. Gordon as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Alan L. Bean as he emerges from his postflight quarantine. Addressing the crowd gathered outside the LRL, Conrad commented that “the LRL was really quite pleasant,” but all three were glad to be breathing non man-made air! While the men went home to their families for a short rest, work inside the LRL continued. Scientists began examining the first of the 75 pounds of rocks returned by the astronauts as well as the camera and other hardware they removed from Surveyor 3 for effects of 31 months exposed to the harsh lunar environment. Preliminary analysis of the TV camera that failed early during their first spacewalk on the lunar surface indicated that the failure was due to partial burnout of the Videocon tube, likely caused by the crew accidentally pointing the camera toward the Sun. Other scientists busied themselves with analyzing the data returning from the Apollo Lunar Surface Experiment Package (ALSEP) instruments Conrad and Bean deployed on the lunar surface. Mission planners examining the photographs taken from lunar orbit of the Fra Mauro area were confident that the next mission, Apollo 13, would be able to make a safe landing in that geologically interesting site, the first attempt to land in the lunar highlands.
      After taking their first steps in the sunshine, Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon address a large group of well-wishers outside the Lunar Receiving Laboratory. Bean, left, Gordon, and Conrad during their postflight press conference. Two days after leaving the LRL, Conrad, Gordon, and Bean held their postflight press conference in the MSC auditorium. Addressing the assembled reporters, the astronauts first introduced their wives as their “number one support team,” then provided a film and photo summary of their mission, and answered numerous questions. Among other things, the astronauts praised the spacesuits they wore during the Moon walks, indicating they worked very well and, looking ahead, saw no impediments to longer excursions on future missions. Their only concern centered around the ever-present lunar dust that clung to their suits, raising that as a potential issue for future lunar explorers.
      Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus, right, presents Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean with photos of their launch. White House of the Apollo 12 astronauts and their wives with President Richard M. Nixon, First Lady Pat Nixon, and their daughter Tricia Nixon. Conrad, Gordon, and Bean returned to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 17, where their mission began more than a month earlier and nearly ended prematurely when lightning twice struck their Saturn V rocket. KSC Director Kurt H. Debus presented each astronaut with a framed photograph of their launch in front of 8,000 workers assembled in the Vehicle Assembly Building (VAB). Of their nearly ill-fated liftoff Conrad expressed his signature confidence, “Had we to do it again, I would launch exactly under the same conditions.” Guenter Wendt and his pad closeout team had collected a piece of grounding rod from the umbilical tower, cut it into three short pieces, mounted them with the inscription “In fond memory of the electrifying launch of Apollo 12,” and presented them to the astronauts. Three days later, President Richard M. Nixon and First Lady Pat Nixon welcomed Conrad, Gordon, and Bean and their wives Jane, Barbara, and Sue, respectively, to a dinner at the White House. After dinner, they watched a film about the Apollo 12 mission as well as the recently released motion picture Marooned about three astronauts stranded in space. President Nixon requested that the astronauts pay a visit to former President Lyndon B. Johnson, who for many years championed America’s space program, and brief him on their mission, which they did in January 1970.
      The Alan Bean Day parade in Fort Worth. Apollo 12 astronaut Bean and his family deluged by shredded office paper during the parade in his honor in Fort Worth. Image credits: courtesy Fort Worth Star Telegram. On Dec. 22, the city of Fort Worth, Texas, honored native son Bean, with Conrad, Gordon, and their families joining him for the Alan Bean Day festivities. An estimated 150,000 people lined the streets of the city to welcome Bean and his crewmates, dumping a blizzard of ticker tape and shredded office paper on the astronauts and their families during the parade. City workers cleared an estimated 60 tons of paper from the streets after the event. 

      Apollo 13
      The planned Apollo 13 landing site in the Fra Mauro region, in relation to the Apollo 11 and 12 landing sites. Workers place the Spacecraft Lunar Module Adapter over the Apollo 13 Lunar Module. On Dec. 10, 1969, NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, located about 110 miles east of the Apollo 12 touchdown point. Geologists favored the Fra Mauro area for exploration because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. Unlike the Apollo 11 and 12 sites located in the flat lunar maria, Fra Mauro rests in the relatively more rugged lunar highlands. The precision landing by the Apollo 12 crew and their extensive orbital photography of the Fra Mauro region gave NASA confidence to attempt a landing at Fra Mauro. Workers in KSC’s VAB had stacked the three stages of Apollo 13’s Saturn V in June and July 1969. On Dec. 10, they topped the rocket with the Apollo 13 spacecraft, comprising the Command and Service Modules (CSM) and the Lunar Module (LM) inside the Spacecraft LM Adapter. Five days later, the Saturn V exited the VAB and made the 3.5-mile journey out to Launch Pad 39A to begin a series of tests to prepare it for the launch of the planned 10-day lunar mission. During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the ALSEP, a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the CSM, conducting geologic observations from lunar orbit including photographing potential future landing sites.
      Apollo 13 astronaut James A. Lovell trains on the deployment of the S-band antenna. Apollo 13 astronaut Fred W. Haise examines one of the lunar surface instruments. During the first of the two spacewalks, Apollo 13 Moon walkers Lovell and Haise planned to deploy the five ALSEP experiments, comprising:
      Charged Particle Lunar Environment Experiment (CPLEE) – flying for the first time, this experiment sought to measure the particle energies of protons and electrons reaching the lunar surface from the Sun. Lunar Atmosphere Detector (LAD) – this experiment used a Cold Cathode Ion Gauge (CCIG) to measure the pressure of the tenuous lunar atmosphere. Lunar Heat Flow Experiment (LHE) – designed to measure the steady-state heat flow from the Moon’s interior. Passive Seismic Experiment (PSE) – similar to the device left on the Moon during Apollo 12, consisted of a sensitive seismometer to record Moon quakes and other seismic activity. Lunar Dust Detector (LDD) – measured the amount of dust deposited on the lunar surface. A Central Station provided command and communications to the ALSEP experiments, while a Radioisotope Thermoelectric Generator using heat from the radioactive decay of a Plutonium-238 sample provided uninterrupted power. Additionally, the astronauts planned to deploy and retrieve the Solar Wind Collector experiment to collect particles of the solar wind, as did the Apollo 11 and 12 crews before them. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts Lovell, Haise, Young, and Duke participated in a geology training field trip between Dec. 17 and 20 on the Big Island of Hawaii. Geologist Patrick D. Crosland of the National Park Service in Hawaii provided the astronauts with a tour of recent volcanic eruption sites in the Kilauea area, with the thought that the Fra Mauro formation might be of volcanic origin. During several traverses in the Kilauea Volcano area, NASA geologists John W. Dietrich, Uel S. Clanton, and Gary E. Lofgren and US Geological Survey geologists Gordon A. “Gordie” Swann, M.H. “Tim” Hait, and Leon T. “Lee” Silver accompanied the astronauts. The training sessions honed the astronauts’ geology skills and refined procedures for collecting rock samples and for documentary photography.

      Apollo 14
      The Apollo 14 Command and Service Modules shortly after arriving in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. The Apollo 14 Lunar Module ascent stage shortly after arriving in the MSOB. S69-62154 001 Preparations for the fourth Moon landing mission, Apollo 14, continued as well. At the time tentatively planned for launch in July 1970, mission planners considered the Littrow area on the eastern edge of the Mare Serenitatis, characterized by dark material possibly of volcanic origin, as a potential landing site. Apollo 14 astronauts Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had already begun training for their mission. At KSC’s Manned Spacecraft Operations Building (MSOB), the Apollo 14 CSM arrived from its manufacturer North American Rockwell in Downey, California, as did the two stages of the LM from the Grumman Aerospace and Engineering Company in Bethpage, New York, in November 1969. Engineers began tests of the spacecraft shortly after their arrival. The three stages of the Apollo 14 Saturn V were scheduled to arrive at KSC in January 1970.

      To be continued …

      News from around the world in December 1969:
      December 2 – Boeing’s new 747 Jumbo Jet makes its first passenger flight, from Seattle to New York.
      December 3 – George M. Low sworn in as NASA deputy administrator.
      December 4 – A Boy Named Charlie Brown, the first feature film based on the Peanuts comic strip, is released to theaters for the first time.
      December 7 – The animated Christmas special Frosty the Snowman, makes its television debut.
      December 14 – The Jackson 5 make their first appearance on The Ed Sullivan Show.
      December 18 – The sixth James Bond film, On Her Majesty’s Secret Service, held its world premiere in London, with George Lazenby as Agent 007.
      View the full article
    • By NASA
      4 min read
      Expanded AI Model with Global Data Enhances Earth Science Applications 
      On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. 
      The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. 
      “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
      AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
      Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. 
      The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
      One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.  
      Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. 
      The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. 
      Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
      Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. 
      “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
      The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.  
      For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
      Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science & Research Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      23 hours ago
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      23 hours ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      23 hours ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy (front center left) discusses NASA 2040 on Wednesday, Nov. 13, 2024, the agency’s strategic initiative for aligning workforce, infrastructure, and technologies to meet the needs of the future with various groups of employees at the agency’s Kennedy Space Center in Florida.
      The initiative launched in June 2023 to implement meaningful changes to ensure the agency remains the global leader in aerospace and science in the year 2040 while also making the greatest impacts for the nation and the world.
      NASA will focus on addressing the agency’s aging infrastructure, shaping an agency workforce strategy, improving decision velocity at many levels, and exploring ways to achieve greater budget flexibility.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By Space Force
      STARCOM held its inaugural Partnership Days bringing together leaders, educators, and innovators from academic institutions and the space-related private sector.

      View the full article
  • Check out these Videos

×
×
  • Create New...