Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9928a-k1340x520.png

Exciting Hubble telescope images of more than a dozen very distant colliding galaxies indicate that, at least in some cases, big massive galaxies form through collisions between smaller ones, in a "generation after generation" story.

Hubble studied 81 galaxies in the galaxy cluster MS1054-03 and found that 13 are remnants of recent collisions or pairs of colliding galaxies. The large picture on the left shows this galaxy cluster. The eight smaller images on the right are close-ups of some of the colliding galaxies. The snapshots show the paired galaxies very close together with streams of stars being pulled out of them. The colliding "parent" galaxies lose their shape and smoother galaxies are formed. The whole merging process can take less than a billion years.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.ESA/Hubble & NASA, C. Murray The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
      The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
      Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
      View the full article
    • By NASA
      NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
      Credit: USSF 30th Space Wing/Christopher
      NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.
      The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
      The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.
      The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, Feb. 25
      2 p.m. – SPHEREx and PUNCH Science Overview News Conference
      Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters Joe Westlake, director, Heliophysics Division, NASA Headquarters Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC Phil Korngut, SPHEREx instrument scientist, Caltech The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      Wednesday, Feb. 26
      3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference
      Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters David Cheney, PUNCH program executive, NASA Headquarters James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory Denton Gibson, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer Coverage of the prelaunch news conference will stream live on NASA+.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      Thursday, Feb. 27
      12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.
      9:15 p.m. – Launch coverage begins on NASA+.
      10:09 p.m. – Launch window opens.
      Audio Only Coverage
      Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
      For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.
      Attend the Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP
      Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program
      Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese
      For more information about these missions, visit:
      https://science.nasa.gov/mission/spherex/
      https://science.nasa.gov/mission/punch/
      -end-
      Alise Fisher – SPHEREx
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier – PUNCH
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aquiar@nasa.gov
      Share
      Details
      Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Missions Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Captures a Cosmic Cloudscape
      This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away. ESA/Hubble & NASA, C. Murray
      Download this image

      The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
      The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include of bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
      Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More

      Caldwell 103 / Tarantula Nebula / 30 Doradus


      Hubble Studies the Tarantula Nebula’s Outskirts


      Hubble’s New View of the Tarantula Nebula


      Hubble’s Bubbles in the Tarantula Nebula


      Hubble Probes Interior of Tarantula Nebula

      Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Feb 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Absorption or Dark Nebulae Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Star-forming Nebulae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
    • By NASA
      Four individuals with NASA affiliations have been named 2022 fellows by the American Association for the Advancement of Science (AAAS) in recognition of their scientifically and socially distinguished achievements in the scientific enterprise.
      Election as a Fellow by the AAAS Council honors members whose efforts on behalf of the advancement of science or its applications in service to society have distinguished them among their peers and colleagues. The 2022 Fellows class includes 508 scientists, engineers, and innovators spanning 24 scientific disciplines.
      Rita Sambruna from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, was recognized in the AAAS Section on Astronomy, and Jennifer Wiseman, also from Goddard, was recognized in the AAAS Section on Physics. Dorothy Peteet of NASA’s Goddard Institute for Space Studies (GISS) in New York was honored in the AAAS section on Earth Science. Erik Conway of NASA’s Jet Propulsion Laboratory (JPL) in southern California was honored for distinguished contributions and public outreach to the history of science and understanding of contemporary science and science policy.
      Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.Courtesy of Rita M. Sambruna Rita Sambruna
      Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.
      She worked with a team to position Goddard to lead the decadal top priority missions. She led a team to set into place a vision for a Multi-Messenger Astrophysics Science Support Center at Goddard, to lead the astrophysics community in reaping the most from NASA- and ground-based observations of celestial sources.  
      She came to Goddard in 2005 to work on multiwavelength observations of jets using the Fermi Gamma-ray Space Telescope and other NASA capabilities. From 2010 to 2020 she worked at NASA Headquarters, Washington, as a program scientist for astrophysics. Her research interests include relativistic jets, physics of compact objects, supermassive black holes in galaxies, and multiwavelength and multi-messenger astrophysics.
      In December 2022, Sambruna was awarded the Honorary Fellowship of the Royal Astronomical Society (RAS) as an internationally acclaimed astrophysicist who embodies the RAS mission in promoting the advancement of science, the increased participation of historically underrepresented groups in astronomy, and a broad interest in astronomy. In 2019 she was awarded the NASA Extraordinary Achievement Medal for her leadership on the 2020 Astrophysics Decadal Survey studies. She was named Fellow of the American Physical Society in 2020 and a Fellow of the American Astronomical Society in 2021.
      Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible.NASA Jennifer Wiseman
      Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible. Previously, Wiseman headed Goddard’s Laboratory for Exoplanets and Stellar Astrophysics. She started her career at NASA in 2003 as the program scientist for Hubble and several other astrophysics missions at NASA Headquarters. 
      Wiseman’s scientific expertise is centered on the study of star-forming regions in our galaxy using a variety of tools, including radio, optical, and infrared telescopes. She has a particular interest in dense interstellar gas cloud cores, embedded protostars, and their related outflows as active ingredients of cosmic nurseries where stars and their planetary systems are born. In addition to research in astrophysics, Wiseman is also interested in science policy and public science outreach and engagement. She has served as a congressional science fellow of the American Physical Society, an elected councilor of the American Astronomical Society, and a public dialogue leader for AAAS. She enjoys giving talks on the excitement of astronomy and scientific discovery, and has appeared in many science and news venues, including The New York Times, The Washington Post, NOVA, and National Public Radio.
      Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.NASA Dorothy Peteet
      Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.
      In collaboration with GISS climate modelers and LDEO geochemists, she is studying conditions of the Late Pleistocene and Holocene that are archived in sediments from lakes and wetlands. Peteet documents past changes in vegetation, derived from analyses of pollen and spores, plant and animal macrofossils, carbon, and charcoal embedded in sediments. Her research provides local and regional records of ancient vegetational and climate history. One recent focus has been the sequestration of carbon in northern peatlands and coastal marshes: ecosystems that are now vulnerable to climate change and potentially substantial releases of carbon back into the atmosphere.
      Peteet also has performed climate modeling experiments to test hypotheses concerning the last glacial maximum and abrupt climate change. She is interested in climate sensitivity and in how past climate changes and ecological shifts might provide insights on future climate change. 
      Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.NASA Erik Conway
      Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.
      He is the author of nine books, most recently, “A History of Near-Earth Objects Research” (NASA, 2022), and “The Big Myth” (Bloomsbury, 2023). His book “Merchants of Doubt” with Naomi Oreskes was awarded the Helen Miles Davis and Watson Davis prize from the History of Science Society. He received a Guggenheim Fellowship in 2018 and the Athelstan Spilhaus Award from the American Geophysical Union in 2016.
      AAAS noted that these honorees have gone above and beyond in their respective disciplines. They bring a broad diversity of perspectives, innovation, curiosity, and passion that will help sustain the scientific field today and into the future. Many of these individuals have broken barriers to achieve successes in their given disciplines.
      AAAS is the world’s largest general scientific society and publisher of the Science family of journals.
      For information about NASA and agency programs, visit: https://www.nasa.gov
      Share
      Details
      Last Updated Feb 10, 2025 EditorJamie Adkins Related Terms
      Goddard Space Flight Center Goddard Institute for Space Studies People of Goddard View the full article
    • By NASA
      This artist’s concept visualizes a super-Neptune world orbiting a low-mass star near the center of our Milky Way galaxy. Scientists recently discovered such a system that may break the current record for fastest exoplanet system, traveling at least 1.2 million miles per hour, or 540 kilometers per second.NASA/JPL-Caltech/R. Hurt (Caltech-IPAC) Astronomers may have discovered a scrawny star bolting through the middle of our galaxy with a planet in tow. If confirmed, the pair sets a new record for the fastest-moving exoplanet system, nearly double our solar system’s speed through the Milky Way.
      The planetary system is thought to move at least 1.2 million miles per hour, or 540 kilometers per second.
      “We think this is a so-called super-Neptune world orbiting a low-mass star at a distance that would lie between the orbits of Venus and Earth if it were in our solar system,” said Sean Terry, a postdoctoral researcher at the University of Maryland, College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Since the star is so feeble, that’s well outside its habitable zone. “If so, it will be the first planet ever found orbiting a hypervelocity star.”
      A paper describing the results, led by Terry, was published in The Astronomical Journal on February 10.
      A Star on the Move
      The pair of objects was first spotted indirectly in 2011 thanks to a chance alignment. A team of scientists combed through archived data from MOA (Microlensing Observations in Astrophysics) – a collaborative project focused on a microlensing survey conducted using the University of Canterbury Mount John Observatory in New Zealand — in search of light signals that betray the presence of exoplanets, or planets outside our solar system.
      Microlensing occurs because the presence of mass warps the fabric of space-time. Any time an intervening object appears to drift near a background star, light from the star curves as it travels through the warped space-time around the nearer object. If the alignment is especially close, the warping around the object can act like a natural lens, amplifying the background star’s light.
      This artist’s concept visualizes stars near the center of our Milky Way galaxy. Each has a colorful trail indicating its speed –– the longer and redder the trail, the faster the star is moving. NASA scientists recently discovered a candidate for a particularly speedy star, visualized near the center of this image, with an orbiting planet. If confirmed, the pair sets a record for fastest known exoplanet system.NASA/JPL-Caltech/R. Hurt (Caltech-IPAC) In this case, microlensing signals revealed a pair of celestial bodies. Scientists determined their relative masses (one is about 2,300 times heavier than the other), but their exact masses depend on how far away they are from Earth. It’s sort of like how the magnification changes if you hold a magnifying glass over a page and move it up and down.
      “Determining the mass ratio is easy,” said David Bennett, a senior research scientist at the University of Maryland, College Park and NASA Goddard, who co-authored the new paper and led the original study in 2011. “It’s much more difficult to calculate their actual masses.”
      The 2011 discovery team suspected the microlensed objects were either a star about 20 percent as massive as our Sun and a planet roughly 29 times heavier than Earth, or a nearer “rogue” planet about four times Jupiter’s mass with a moon smaller than Earth.
      To figure out which explanation is more likely, astronomers searched through data from the Keck Observatory in Hawaii and ESA’s (European Space Agency’s) Gaia satellite. If the pair were a rogue planet and moon, they’d be effectively invisible – dark objects lost in the inky void of space. But scientists might be able to identify the star if the alternative explanation were correct (though the orbiting planet would be much too faint to see).
      They found a strong suspect located about 24,000 light-years away, putting it within the Milky Way’s galactic bulge — the central hub where stars are more densely packed. By comparing the star’s location in 2011 and 2021, the team calculated its high speed.
      This Hubble Space Telescope image shows a bow shock around a very young star called LL Ori. Named for the crescent-shaped wave made by a ship as it moves through water, a bow shock can be created in space when two streams of gas collide. Scientists think a similar feature may be present around a newfound star that could be traveling at least 1.2 million miles per hour, or 540 kilometers per second. Traveling at such a high velocity in the galactic bulge (the central part of the galaxy) where gas is denser could generate a bow shock. NASA and The Hubble Heritage Team (STScI/AURA); Acknowledgment: C. R. O’Dell (Vanderbilt University) But that’s just its 2D motion; if it’s also moving toward or away from us, it must be moving even faster. Its true speed may even be high enough to exceed the galaxy’s escape velocity of just over 1.3 million miles per hour, or about 600 kilometers per second. If so, the planetary system is destined to traverse intergalactic space many millions of years in the future.
      “To be certain the newly identified star is part of the system that caused the 2011 signal, we’d like to look again in another year and see if it moves the right amount and in the right direction to confirm it came from the point where we detected the signal,” Bennett said.
      “If high-resolution observations show that the star just stays in the same position, then we can tell for sure that it is not part of the system that caused the signal,” said Aparna Bhattacharya, a research scientist at the University of Maryland, College Park and NASA Goddard who co-authored the new paper. “That would mean the rogue planet and exomoon model is favored.”
      NASA’s upcoming Nancy Grace Roman Space Telescope will help us find out how common planets are around such speedy stars, and may offer clues to how these systems are accelerated. The mission will conduct a survey of the galactic bulge, pairing a large view of space with crisp resolution.
      “In this case we used MOA for its broad field of view and then followed up with Keck and Gaia for their sharper resolution, but thanks to Roman’s powerful view and planned survey strategy, we won’t need to rely on additional telescopes,” Terry said. “Roman will do it all.”
      Download additional images and video from NASA’s Scientific Visualization Studio.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Feb 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Exoplanets Astrophysics Exoplanet Discoveries Exoplanet Science Goddard Space Flight Center Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Science & Research Studying Exoplanets The Universe Explore More
      4 min read Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed!
      On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond…
      Article 7 months ago 3 min read Discovery Alert: Water Vapor Detected on a ‘Super Neptune’
      The atmosphere of a “super Neptune” some 150 light-years distant contains water vapor, a new…
      Article 3 years ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
      Article 1 year ago
      View the full article
  • Check out these Videos

×
×
  • Create New...