Jump to content

Recommended Posts

  • Publishers
Posted
Feature Article header

14 min read

Aura at 20 Years

Introduction

In the 1990s and early 2000s, an international team of engineers and scientists designed an integrated observatory for atmospheric composition – a bold endeavor to provide unprecedented detail that was essential to understanding how Earth’s ozone (O3) layer and air quality respond to changes in atmospheric composition caused by human activities and natural phenomena. This work addressed a key NASA Earth science objective. Originally referred to as Earth Observing System (EOS)–CHEM (later renamed Aura,) the mission would become the third EOS Flagship mission, joining EOS-AM 1 (Terra) launched in 1999 and EOS-PM 1 (Aqua), launched in 2002. The Aura spacecraft – see Figure 1 – is similar in design to Terra and identical to Aqua. Aura and its four instruments were launched on July 15, 2004 from Vandenberg Air Force Base (now Space Force Base) in California – see Photo.

Aura 20 figure 1
Figure 1. An artist’s representation of the Aura satellite in orbit around the Earth.
Image credit: NASA
Aura nighttime launch photo
Photo.  A photo of the nighttime launch of Aura on July 15, 2004.
Image credit: NASA

In 2014 The Earth Observer published an article called  “Aura Celebrates Ten Years in Orbit,” [Nov–Dec 2014, 26:6, pp. 4–18] which details the history of Aura and the first decade of science resulting from its data. Therefore, the current article will focus on the science and applications enabled by Aura data in the last decade. It also examines Aura’s future and the legacies of the spacecraft’s instruments. Readers interested in more information on Aura and the scientific research and applications enabled by its data can visit the Aura website.

aura 20 invite graphic

Recent Science Achievements from Aura’s Instrument (in alphabetical order)

High Resolution Dynamics Limb Sounder

The capabilities of the High Resolution Dynamics Limb Sounder (HIRDLS) were compromised at launch and operations ceased in March 2008 due to an image chopper stall. Nevertheless, the HIRDLS team was able to produce a three-year dataset notable for high vertical resolution profiles of greater than 1 km (0.62 mi) for temperature and O3 in the upper troposphere to the mesosphere. Though limited, the HIRDLS dataset demonstrated the incredible potential of the instrument for atmospheric research. So much so, that scientists are now in the study phase for a new instrument, part of the proposed Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE) mission, which would have similar capabilities as HIRDLS with advancements in spectral and spatial imaging. (STRIVE is one of four missions currently undergoing one-year concept studies, as part of NASA’s Earth System Explorer Program, which was established in the 2017 Earth Science Decadal Survey. Two winning proposals will be chosen in 2025 for full development and launch in 2030 or 2032.)

Microwave Limb Sounder

The Microwave Limb Sounder (MLS) was developed to study: 1) the evolution and recovery of the stratospheric O3 layer; 2) the role of the stratosphere, notably stratospheric humidity, in climate feedback processes; and 3) the behavior of air pollutants in the upper troposphere. MLS measures vertical profiles from the upper troposphere at ~10 km altitude (6.2 mi) to the mesosphere at ~90 km (56 mi) of 16 trace gases, temperature, geopotential height, and cloud ice. Its unique measurement suite has made it the “go-to” instrument for most data-driven studies of middle atmosphere composition over the last two decades.

Data collection during the past decade has highlighted the ability of the stratosphere to exhibit surprising and/or envelope-redefining behavior, (Envelope-redefining is a term that is used to refer to an event that greatly exceeded previous observed ranges of this event.) MLS observations have been crucial for the discovery and diagnoses of these extreme events. For example, in 2019, a stratospheric sudden warming over the southern polar cap in September – rare in the Antarctic – curtailed chemical processing, leading to an anomalously weak O3 hole. As another example, prolonged hot and dry conditions in Australia during the subsequent 2019–2020 southern summer promoted the catastrophic “Australian New Year” (ANY) fires. MLS observations showed that fire-driven pyrocumulonimbus convection lofted plumes of polluted air into the stratosphere to a degree never seen during the Aura mission.

Apart from those individual plumes, smoke pervaded the southern lower stratosphere, leading to unprecedented perturbations in southern midlatitude lower stratospheric composition, with chlorine (Cl) shifting from its main reservoir species, hydrochloric acid (HCl), into the O3-destroying form, hypochlorite (ClO). Peak anomalies in chlorine species occurred in mid-2020 – months after the fires. State-of-the-art atmospheric chemistry models in which wildfire smoke has properties similar to those of sulfate (SO4) aerosols were unable to reproduce the observed chemical redistribution. New model simulations assuming that HCl dissolves more readily in smoke than in SO4 particles under typical midlatitude stratospheric conditions better match the MLS observations.

As extraordinary as these events were, their impacts on the stratosphere were spectacularly eclipsed by the impact of the January 2022 eruption of the Hunga Tonga-Hunga Ha’apai  (Hunga) volcano in the Pacific Ocean. The Hunga eruption lofted about 150 Tg of water vapor into the stratosphere – with initial injections reaching into the mesosphere. The eruption almost instantaneously increased total stratospheric water vapor by about 10%. MLS was the only sensor able to track the plume in the first weeks following the eruption. The Hunga humidity enhancement resulted in an envelope-redefining, low-temperature anomaly in the stratosphere, in turn inducing changes in stratospheric circulation. Repartitioning of southern midlatitude Cl also occurred, though to a lesser degree than following the ANY fires and in a manner broadly consistent with known chemical mechanisms. The Hunga water vapor enhancement has not substantially declined in the 2.5 years since the eruption, and studies indicate that it will likely endure for several more years.

Impacts of the Hunga humidity on polar O3 loss have also been investigated. The timing and location of the eruption were such that the plume reached high southern latitudes only after the 2022 Antarctic winter vortex had developed. Since the strong winds at the vortex edge present a transport barrier, polar stratospheric cloud (PSC) formation and O3 hole evolution were largely unaffected. When the vortex broke down at the end of the 2022 Antarctic winter, moist air flooded the southern polar region, increasing humidity in the region. Cold, moist conditions led to unusually early and vertically extensive PSC formation and Cl activation, but chemical processing ran to completion by mid-July, as typically occurs in southern winter. The cumulative chemical O3 losses ended up being unremarkable throughout the lower stratosphere. The Hunga plume was also largely excluded from the 2022–2023 Arctic vortex. The 2023–2024 Arctic O3 loss season was characterized by conditions that were dynamically disturbed and not persistently cold, and springtime O3 was near or above average. The extraordinary stratospheric hydration from Hunga has so far had minimal impact on chemical processing and O3 loss in the polar vortices in either hemisphere – see Figure 2.

Aura 20 figure 2
Figure 2. The evolution of MLS water vapor anomalies (deviations from the baseline 2005–2021 climatology) from January 2019 through December 2023 as a function of equivalent latitude at 700 K potential temperature in the middle stratosphere at ~27 km altitude (17 mi). Black contours mark the approximate edge of the polar vortex. The green triangle marks the time of the main Hunga eruption at latitude 20.54°S on January 15, 2022.
Figure credit: Updated and adapted from a 2023 paper in Geophysical Research Letters

With the end of Aura and MLS, the future for stratospheric limb sounding observations is unclear. While stratospheric O3 and aerosol will continue to be measured on a daily, near-global basis by the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (OMPS-LP) instruments on the Suomi National Polar-orbiting Partnership (Suomi NPP) and Joint Polar Satellite System (JPSS-2, -3, and -4) satellites, there are no confirmed plans for daily, near-global observations of either long-lived trace gases or halogenated species – both of which are needed to diagnose observed changes in O3. The only other sensor making such measurements, the Canadian Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE–FTS), is itself older than MLS and, as a solar occultation instrument, measures only 30 profiles-per-day, taking around a month to cover all latitudes. Similarly, no other sensor is set to provide daily, near-global measurements of stratospheric water vapor until the launch of the Canadian High-altitude Aerosols, Water vapour and Clouds (HAWC) mission in the early 2030s. Some potential new mission concepts are under consideration by both NASA and ESA, but they are subject to competition. Even if both instruments are ultimately selected, gaps in the records of many species measured by MLS are inevitable. The MLS PI is leading an effort to develop new technologies that would allow an instrument that could restart MLS measurements to be built in a far smaller mass/power footprint (e.g., 60 kg, 90 W vs. 500 kg, 500 W for Aura MLS), and technologies exist for yet-smaller MLS-like instruments that could assume the legacy of the highly impactful MLS record at low cost in future decades.

Ozone Monitoring Instrument

The Ozone Monitoring Instrument (OMI) continues the Total Ozone Mapping Spectrometer (TOMS) record for total O3 and other atmospheric parameters related to O3 chemistry and climate. It employs hyperspectral imaging in a push-broom mode to observe solar backscatter radiation in the visible and ultraviolet.

OMI is a Dutch–Finnish contribution to the Aura mission, and its remarkable stability and revolutionary two-dimensional (2D) detector (spatial in one dimension and spectral in the other) has produced a two-decade record of science- and trend-quality datasets of atmospheric column observations. OMI continues the long-term record of total column O3 measurements begun in 1979, and its observations of nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (CH2O), and absorbing aerosols provided exceptional spatial resolution for study of anthropogenic and natural trends and variations of these pollutants around the world. Its radiometric and spectral stability has made it a valuable contributor for solar spectral irradiance measurements to complement dedicated solar instruments on other satellites. The many achievements made possible with OMI are documented in a review article.

OMI’s multidecade data records have revolutionized the ability to monitor air quality changes around the world, even at the sub-urban level. In particular, OMI NO2 data have been transformative. Recently, these data were used to track changes in air pollution associated with efforts to control the spread of SARS-CoV-2. OMI’s long, stable data record allowed for changes in pollution levels in 2020 – at the height of global lockdowns – to be put into historical perspective, especially within the envelope of typical year-to-year variations associated with meteorological variability. Many research studies assessed the impact of the pandemic lockdowns on air pollution, supporting novel uses of OMI data for socioeconomic-related research. For example, OMI NO2 data were shown to serve as an environmental indicator to evaluate the effectiveness of lockdown measures and as a significant predictor for the deceleration of COVID-19 spread. OMI NO2 data were also used as a proxy for the economic impact of the pandemic as NO2 is emitted during fossil fuel combustion, which is another proxy for economic activity since most global economies are driven by fossil fuels – see Animation.

Animation. OMI data show changes in average levels of NO2 from March 20 to May 20 for each year from 2015 to 2023 over the northeast U.S. Levels in 2020 were ~30%  lower relative to previous years because of efforts to slow the spread of COVID-19. OMI data indicate similar reductions in NO2 in cities across the globe in early 2020 and a gradual recovery in pollutant emissions in late 2020 into 2023. Additional images for other world cities and regions are available through the NASA Science Visualization Studio website and the Air Quality Observations from Space website.

OMI’s datasets are being continued by successor 2D detector array instruments, such as the previously mentioned Copernicus Sentinel-5P TROPOMI mission, the Republic of Korea’s Geostationary Environment Monitoring Spectrometer (GEMS), and NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO). All of these missions have enhanced spatial resolution relative to OMI, but have benefited from the innovative retrieval algorithms pioneered by OMI’s retrieval teams.

Tropospheric Emission Spectrometer

The Tropospheric Emission Spectrometer (TES) provided vertically-resolved distributions of a number of tropospheric constituents, e.g., O3, methane (CH4), and various volatile organic compounds. The instrument was decommissioned in 2018 due to signs of aging associated with a failing Interferometer Control System motor encoder bearing. Nevertheless, TES measurements led to a number of key results regarding changes in atmospheric composition that were published over the past 10 years.

Measurements from TES, OMI, and MLS showed that transport of O3 and its precursors from East Asia offset about 43% of the decline expected in O3 over the western U.S., based on emission reductions observed there over the period 2005–2010. TES megacity measurements revealed that the frequency of high-O3 days is particularly pronounced in South Asian megacities, which typically lack ground-based pollution monitoring networks. TES water vapor and semi-heavy water measurements indicated that water transpired from Amazonian vegetation becomes a significant moisture source for the atmosphere, during the transition from dry to wet season. The increasing water vapor provides the fuel needed to start the next rainy season. Measurements of CH4 from TES and carbon monoxide (CO) from Measurements of Pollution in the Troposphere (MOPITT) on Terra showed that CH4 emissions from fires declined at twice the rate expected from changes in burned area from 2004–2014. This finding helped to balance the CH4 budget for this period, because it offset some of the large increases in fossil fuel and wetland emissions. Through direct measurement of the O3 greenhouse gas effect, TES instantaneous radiative kernels revealed the impact of hydrological controls on the O3 radiative forcing and were used to show substantial radiative bias in Intergovernmental Panel on Climate Change (IPCC) chemistry–climate models. The TES team pioneered the retrieval of a number of species, such as peroxyacetyl nitrate, carbonyl sulfide, and ethylene.

The spirit of TES lives on through the NASA TRopospheric Ozone and its Precursors from Earth System Sounding (TROPESS) project, which generates data products of O3 and other atmospheric constituents by processing data from multiple satellites through a common retrieval algorithm and ground data system. TROPESS builds upon the success of TES and is considered a bridge to allow the development of a continuous record of O3 and other trace gas species as a follow-on to TES.

Future of Aura

In April 2023, Aura’s mission operations team performed the last series of maneuvers to maintain its position in the A-Train constellation of satellites. Since then, Aura has begun drifting. As of July 2024, Aura has descended ~5 km (3 mi) in altitude from ~700 km (435 mi) and its equator crossing time has increased by ~9 min from ~1:44 PM local time. This amount of drift is small, and the Aura MLS and OMI retrieval teams are ensuring the science- and trend-quality of the datasets.

As Aura continues to drift, the amount of sunlight reaching its solar panels will slowly decrease and will no longer be able to generate sufficient power to operate the spacecraft and instruments by mid-2026. At this point, the amount of local time drift will still be relatively small – less than one hour – so the retrieval teams will be able to ensure quality for most data products until this time.

In the remaining years, Aura’s aging but remarkably stable instruments will continue to add to the unprecedented two decades of science- and trend-quality data of numerous key tropospheric and stratospheric constituents. Aura data will be key for monitoring the evolution of the Hunga volcanic plume and understanding its continued impact on the chemistry and dynamics of the stratosphere. Observations from MLS and OMI will also be used to evaluate data from new and upcoming instruments (e.g., ESA’s Atmospheric Limb Tracker for Investigation of Upcoming Stratosphere (Altius); NASA’s TEMPO, Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), and Total and Spectral Solar Irradiance Sensor-2 (TSIS-2) missions, or at least used to help minimize the gaps between data collections.

Aura’s Scientific Legacy

The Aura mission has been nothing short of transformative for atmospheric research and applied sciences. The multidecade, stable datasets have furthered process-based understanding of the chemistry and dynamics of atmospheric trace gases, especially those critical for understanding the causes of trends and variations in Earth’s protective ozone layer.  

The two decades that Aura has flown have been marked by profound atmospheric changes and numerous serendipitous events, both natural and man-made. The data from Aura’s instruments have given scientists and applied scientists an unparalleled view – including at the sub-urban scale – of air pollution around the world, clearly showing the influence of rapid industrialization, environmental regulations designed to improve air quality, seasonal agricultural burning, catastrophic wildfires, and even a global pandemic, on the air we breathe. The Aura observational record spans the period that includes the decline of O3-destroying substances, and Aura data illustrate the beginnings of the recovery of the Antarctic O3 hole, a result of unparalleled international cooperation to reduce these substances.

Aura’s datasets have given a generation of scientists the most comprehensive global view to date of critical gases in Earth’s atmosphere and the chemical and dynamic processes that shape their concentrations. Many, but not all, of these datasets are being/will be continued by successor instruments that have benefited from the novel technologies incorporated into the design of Aura’s instruments as well as the innovative retrieval algorithms pioneered by Aura’s retrieval teams.

Black Separator Line

Acknowledgements
The author wishes to acknowledge the decades of hard work of the many hundreds of people who have contributed to the success of the international Aura mission. There are too many to acknowledge here and I’m sure that many names from the early days are lost to time. I would like to offer special thanks to those scientists who, back in the 1980s, first dreamed of the mission that would become Aura.

Black Separator Line

Bryan Duncan
NASA’s Goddard Space Flight Center (GSFC)

bryan.n.duncan@nasa.gov

Share

Details

Last Updated
Sep 16, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA NASA astronauts Jim Lovell, Fred Haise, and Jack Swigert launch aboard the Apollo 13 spacecraft from NASA’s Kennedy Space Center in Florida on April 11, 1970. The mission seemed to be going smoothly until 55 hours and 55 minutes in when an oxygen tank ruptured. The new mission plan involved abandoning the Moon landing, looping around the Moon and getting the crew home safely as quickly as possible. The crew needed to go into “lifeboat mode,” using the lunar module Aquarius to save the spacecraft and crew. On April 17, the crew returned to Earth, splashing down in the Pacific Ocean near Samoa.
      Image credit: NASA
      View the full article
    • By NASA
      NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
      Image credit: NASA
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The radio antennas of NASA’s Canberra Deep Space Communications Complex are lo-cated near the Australian capital. It’s one of three Deep Space Network facilities around the world that keep the agency in contact with dozens of space missions Located at Tidbinbilla Nature Reserve near the Australian capital city, the Canberra complex joined the Deep Space Network on March 19, 1965, with one 85-foot-wide (26-meter-wide) radio antenna. The dish, called Deep Space Station 42, was decommis-sioned in 2000. This photograph shows the facility in 1965.NASA Canberra joined the global network in 1965 and operates four radio antennas. Now, preparations have begun on its fifth as NASA works to increase the network’s capacity.
      NASA’s Deep Space Network facility in Canberra, Australia celebrated its 60th anniversary on March 19 while also breaking ground on a new radio antenna. The pair of achievements are major milestones for the network, which communicates with spacecraft all over the solar system using giant dish antennas located at three complexes around the globe.
      Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      Suzanne Dodd, the director for the Interplanetary Network Directorate at JPL, addresses an audience at the Deep Space Network’s Canberra complex on March 19, 2025. That day marked 60 years since the Australian facility joined the network.NASA “As we look back on 60 years of incredible accomplishments at Canberra, the groundbreaking of a new antenna is a symbol for the next 60 years of scientific discovery,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “Building cutting-edge antennas is also a symbol of how the Deep Space Network embraces new technologies to enable the exploration of a growing fleet of space missions.”
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna. 
      Canberra’s Role
      The Deep Space Network was officially founded on Dec. 24, 1963, when NASA’s early ground stations, including Goldstone, were connected to the new network control center at the agency’s Jet Propulsion Laboratory in Southern California. Called the Space Flight Operations Facility, that building remains the center through which data from the three global complexes flows.
      The Madrid facility joined in 1964, and Canberra went online in 1965, going on to help support hundreds of missions, including the Apollo Moon landings.
      Three eye-catching posters featuring the larger 230-foot (70-meter) antennas located at the three Deep Space Network complexes around the world.NASA/JPL-Caltech “Canberra has played a crucial part in tracking, communicating, and collecting data from some of the most momentous missions in space history,” said Kevin Ferguson, director of the Canberra Deep Space Communication Complex. “As the network continues to advance and grow, Canberra will continue to play a key role in supporting humanity’s exploration of the cosmos.”
      By being spaced equidistant from one another around the globe, the complexes can provide continual coverage of spacecraft, no matter where they are in the solar system as Earth rotates. There is an exception, however: Due to Canberra’s location in the Southern Hemisphere, it is the only one that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      New Technologies
      In addition to constructing more antennas like Canberra’s Deep Space Station 33, NASA is looking to the future by also experimenting with laser, or optical, communications to enable significantly more data to flow to and from Earth. The Deep Space Network currently relies on radio frequencies to communicate, but laser operates at a higher frequency, allowing more data to be transmitted.
      As part of that effort, NASA is flying the laser-based Deep Space Optical Communications experiment with the agency’s Psyche mission. Since the October 2023 launch, it has demonstrated high data rates over record-breaking distances and downlinked ultra-high definition streaming video from deep space.
      “These new technologies have the potential to boost the science and exploration returns of missions traveling throughout the solar system,” said Amy Smith, deputy project manager for the Deep Space Networkat JPL, which manages the network. “Laser and radio communications could even be combined to build hybrid antennas, or dishes that can communicate using both radio and optical frequencies at the same time. That could be a game changer for NASA.”
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn/
      NASA’s New Deep Space Network Antenna Has Its Crowning Moment NASA’s New Experimental Antenna Tracks Deep Space Laser VIDEO: How Do We Know Where Faraway Spacecraft Are? News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-048
      Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Share
      Details
      Last Updated Apr 08, 2025 Related Terms
      Deep Space Network Jet Propulsion Laboratory Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      On March 24, 1975, the last in a long line of super successful Saturn rockets rolled out from the vehicle assembly building to Launch Pad 39B at NASA’s Kennedy Space Center in Florida. The Saturn IB rocket for the Apollo-Soyuz Test Project was the 19th in the Saturn class stacked in the assembly building, beginning in 1966 with the Saturn V 500F facilities checkout vehicle. Thirteen flight Saturn V rockets followed, 12 to launch Apollo spacecraft and one to place the Skylab space station into orbit. In addition, workers stacked four flight Saturn IB rockets, three to launch crews to Skylab and one for Apollo-Soyuz, plus another for the Skylab rescue vehicle that was not needed and never launched. Previously, workers stacked Saturn I and Saturn IB rockets on the pads at Launch Complexes 34 and 37. With the successful liftoff in July 1975, the Saturn family of rockets racked up a 100 percent success rate of 32 launches. 

      Workers lower the Apollo command and service modules onto the spacecraft adaptor.NASA Technicians in the assembly building replace the fins on the Saturn IB rocket’s first stage. NASA Workers in the assembly building prepare to lower the spacecraft onto its Saturn IB rocket.NASA Inspections of the Saturn IB rocket’s first stage fins revealed hairline cracks in several hold-down fittings and managers ordered the replacement of all eight fins. While the cracks would not affect the flight of the rocket they bore the weight of the rocket on the mobile launcher. Workers finished the fin replacement on March 16. Engineers in Kennedy’s spacecraft operations building prepared the Apollo spacecraft for its historic space mission. By early March, they had completed checkout and assembly of the spacecraft and transported it to the assembly building on March 17 to mount it atop the Saturn IB’s second stage. Five days later, they topped off the rocket with the launch escape system. 

      The final Saturn IB begins its rollout from the vehicle assembly building. NASA The Saturn IB passes by the Launch Control Center. NASA Apollo astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton pose in front of their Saturn IB during the rollout.NASA On March 23, workers edged the mobile transporter carrying the Saturn IB just outside the assembly building’s High Bay 1, where engineers installed an 80-foot tall lightning mast atop the launch tower. The next morning, the stack continued its rollout to Launch Pad 39B with the prime crew of Thomas  Stafford, Vance Brand, and Donald “Deke” Slayton and support crew members Robert Crippen and Richard Truly on hand to observe. About 7,500 people, including guests, dependents of Kennedy employees and NASA Tours patrons, watched as the stack moved slowly out of the assembly building on its five-mile journey to the launch pad.   

      Mission Control in Houston during the joint simulation with Flight Director Donald Puddy in striped shirt and a view of Mission Control in Moscow on the large screen at left. NASA A group of Soviet flight controllers in a support room in Mission Control in Houston during the joint simulation. NASA On March 20, flight controllers and crews began a series of joint simulations for the joint mission scheduled for July 1975. For the six days of simulations, cosmonauts Aleksei Leonov and Valeri Kubasov and astronauts Stafford, Brand, and Slayton participated in the activity in spacecraft simulators in their respective countries, with both control centers in Houston and outside Moscow fully staffed as if for the actual mission. The exercises simulated various phases of the mission, including the respective launches, rendezvous and docking, crew transfers and joint operations, and undocking. 

      Astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton in a boilerplate Apollo command module preparing for the water egress training. NASA Stafford, left, Slayton, and Brand in the life raft during water egress training. NASA Astronauts Stafford, Brand and Slayton participated in a water egress training activity on March 8,  completing the exercise in a water tank in Building 260 at NASA’s Johnson Space Center in Houston. The astronauts practiced egressing from their spacecraft onto a lift raft and being lifted up with the use of a Billy Pugh rescue net. They practiced wearing their flight coveralls as well as their spacesuits. 

      Explore More
      5 min read 50 Years Ago: Preparing the Final Saturn Rocket for Flight
      Article 2 months ago 6 min read 45 Years Ago: Soyuz and Apollo Launch
      Article 5 years ago 8 min read 45 Years Ago: Historic Handshake in Space
      Article 5 years ago View the full article
    • By NASA
      On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

      In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

      Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

      The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 
      Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
      Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 
      Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

      During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
      Explore More
      5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
      Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
      Article 2 months ago 6 min read Artemis I Mission Control at a Glance
      Article 3 years ago View the full article
  • Check out these Videos

×
×
  • Create New...