Jump to content

Bloated Stars Swallow Giant Planets


HubbleSite

Recommended Posts

low_STSCI-H-p-9924a-k1340x520.png

The phrase "big fish eat little fish" may hold true when it comes to planets and stars. Perhaps as many as 100 million of the Sun-like stars in our galaxy harbor close-orbiting gas giant planets like Jupiter, or stillborn stars known as brown dwarfs, which are doomed to be gobbled up by their parent stars.

Astronomers did not directly observe the planets, because their parent stars had already swallowed them. But the researchers did find significant telltale evidence that some giant stars once possessed giant planets that were then swallowed up. The devouring stars release excessive amounts of infrared light, spin rapidly, and are polluted with the element lithium. The illustration depicts the cosmic cannibalism.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds.
      The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope.
      Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) America Reyes Wang, Sepideh Khajehei, Julie Nottage, and Ryan Felton. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond.
      Space Biosciences Star: America Reyes Wang
      America Reyes Wang serves as the Space Biology Biospecimen Sharing Program (BSP) Lead in the Space Biosciences Research Branch, where she guides a team of support scientists and a logistics coordinator in planning and performing detailed, collaborative dissections to maximize the scientific return from biological investigations. Under her leadership, the BSP team has contributed over 5,000 samples to the NASA Biological Institutional Scientific Collection (NBISC), approximately half of which were collected in the last 10 months.
      Earth Science Star: Sepideh Khajehei
      Sepideh Khajehei is a NASA Earth eXchange (NEX) Data and Research Scientist in the Biospheric Science Branch, for the Bay Area Environmental Research Institute. She is recognized for her dedicated support of the NASA Administrator’s Earth Information Center, and recently for her outstanding support for an urgent request to revise climate indices just days before the October 7, 2024, opening of NASA’s Hometown Climate Dashboard at the Smithsonian Institute in Washington, D.C.
      Space Science & Astrobiology Star: Julie Nottage
      Julie Nottage continuously goes above and beyond in her role as the Space and Earth Sciences Facilities Service Manager.  She keeps a multi-use interdisciplinary science building running across all aspects of operations and is the go-to person for any problem.  Her can-do approach and wealth of knowledge ensures the facility’s high-quality operation that enables scientists and engineers to focus on their research and instrument work.  Her quality work and extensive coordination of the Voluntary Protection Program allowed these month-long inspections to run smoothly with an improved safety outcome.
      Space Science & Astrobiology Star: Ryan Felton
      Ryan Felton, a NASA Postdoctoral Management Fellow with the Exobiology Branch, is recognized for his successful coordination of an engaging community-wide seminar series focused on Artificial Intelligence/Machine Learning (AI/ML). This seminar series featured four speakers so far over six months on a variety of exciting topics to advance AI/ML knowledge and use in the branch’s research.
      View the full article
    • By NASA
      A preview image of the Minecraft world inspired by NASA’s James Webb Space Telescope. Credit: Minecraft NASA invites gamers, educators, and students to grab their pickaxe and check out its latest collaboration with Minecraft exploring a new world inspired by the agency’s James Webb Space Telescope. The partnership allows creators to experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real Webb images.
      The James Webb Space Telescope Challenges were developed to inspire the next generation of scientists, engineers, and technicians. Through the game, students can immerse themselves in the science and technology behind Webb, deepening their understanding of NASA’s mission and sparking an interest in the real-world applications of science, technology, engineering, and math (STEM).
      “We’re thrilled to bring the wonders and science of NASA’s James Webb Space Telescope into the hands of the Artemis Generation through this exciting Minecraft collaboration,” said NASA Deputy Administrator Pam Melroy. “This collaboration is yet another way anyone can join NASA as we explore the secrets of the universe and solve the world’s most complex problems, making space exploration engaging for learners of all ages.” 
      NASA’s James Webb Space Telescope launched to space Dec. 25, 2021, and has gone on to make detailed observations of the planets within our own solar system, peer into the atmospheres of planets orbiting other stars outside our solar system, and capture images and spectra of the most distant galaxies ever detected.
      “NASA’s collaboration with Minecraft allows players to experience the excitement of one of the most ambitious space missions ever,” said Mike Davis, Webb project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “No matter where Webb looks, it sees something intriguing, setting the stage for amazing discoveries yet to come. As people explore the Minecraft world of Webb, we hope they will be inspired to carry that interest further and maybe someday help NASA build future space telescopes.”
      Webb is the world’s premier space science observatory. The space telescope is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Office of STEM Engagement provides unique opportunities for students to learn about STEM. In 2023, NASA partnered with Minecraft on an Artemis Challenge where users could build and launch a rocket, guide their Orion spacecraft, and even establish a lunar base alongside their team. Through collaboration with partners such as Microsoft, NASA can share the excitement of space exploration with even more students who are part of the Artemis Generation.
      Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at:
      https://www.nasa.gov/stem
      View the full article
    • By NASA
      As systems integration team lead for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Hector Chavez helps build a future where NASA and private industry work together to push the boundaries of space exploration.
      With the rise of commercial providers in the space sector, Chavez’s team works to ensure that these companies can develop end-to-end systems to support NASA’s low Earth orbit operations—from transporting crew and cargo to operating mission centers. His team’s role is to assess how commercial providers are using their systems engineering processes to achieve program goals and objectives.
      Official portrait of Hector Chavez. NASA/David DeHoyos With a background that spans both the National Nuclear Security Administration and NASA, Chavez brings knowledge and insight into working with interdisciplinary teams to create complex, reliable systems. He has collaborated across organizations, contracts, and government to ensure design and operational improvements were carried out safely and reliably.
      “Systems integration brings different systems together to deliver capabilities that can’t be achieved alone,” said Chavez.
      His previous role in NASA’s Safety and Mission Assurance office deepened his expertise in mitigating technical risks in human spaceflight by integrating engineering, health, and safety considerations into the development of space exploration vehicles.
      Hector Chavez and the team prepare to lift and install a receiver telescope assembly for the Optical Development System, used to test the alignment and performance of the optical systems for NASA’s Ice, Cloud, and land Elevation Satellite-2 mission, in a clean room at Goddard Space Flight Center in Greenbelt, Maryland.NASA Now with CLDP, Chavez helps these companies navigate NASA’s design processes without stifling innovation. “Our challenge is to communicate what we’ve identified during technical reviews without prohibiting commercial partners from developing innovative solutions,” he said.

      One recent success was the team’s development of two technical standards for docking systems and payload interfaces that will help ensure these systems’ compatibility with existing technologies. This work is essential in allowing commercial low Earth orbit systems to seamlessly integrate with NASA’s heritage designs, a key step toward realizing the agency’s vision for sustained commercial operations in space.

      When asked about the biggest opportunities and challenges in his role, Chavez emphasizes the importance of early collaboration. By engaging with commercial partners at the early stages of the system development life cycle, NASA can provide feedback that shapes the future of commercial low Earth orbit architecture.

      “We identify technical issues and lessons learned without dictating design solutions, allowing for innovation while ensuring safety and reliability,” explained Chavez.
      Hector Chavez receives an award from the U.S. Department of Energy. Chavez’s approach to leadership and teamwork is rooted in his values of perseverance, integrity, and encouragement. These principles have helped guide the development of CLDP’s mission and vision statements, creating an environment that promotes collaboration and creativity. 

      He is passionate about building a team culture where people feel empowered to take responsible risks and explore solutions.
      Hector Chavez receives a Silver Snoopy Award with his family at NASA’s Johnson Space Center in Houston. NASA As NASA prepares for Artemis missions and the next generation of space explorers, Chavez offers advice to the Artemis Generation: “Never do it alone. Build a community and find common ground to share a vision.”
      View the full article
    • By European Space Agency
      Looking deep into the early Universe with the NASA/ESA/CSA James Webb Space Telescope, astronomers have found something unprecedented: a galaxy with an odd light signature, which they attribute to its gas outshining its stars.
      View the full article
  • Check out these Videos

×
×
  • Create New...