Jump to content

NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training


Recommended Posts

  • Publishers
Posted
4 Min Read

NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training

Credits:
NASA/Trevor Graff/Robert Markowitz

Black and gray sediment stretches as far as the eye can see. Boulders sit on top of ground devoid of vegetation. Humans appear almost miniature in scale against a swath of shadowy mountains. At first glance, it seems a perfect scene from an excursion on the Moon’s surface … except the people are in hiking gear, not spacesuits.

Iceland has served as a lunar stand-in for training NASA astronauts since the days of the Apollo missions, and this summer the Artemis II crew took its place in that long history. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, along with their backups, NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons, joined geology experts for field training on the Nordic island.

iceland-artemisiitraining-b.jpg?w=2048
NASA astronaut and Artemis II mission specialist Christina Koch stands in the desolate landscape of Iceland during a geology field training course. NASA/Robert Markowitz
NASA/Robert Markowitz

“Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training,” said Cindy Evans, Artemis geology training lead at NASA’s Johnson Space Center in Houston. “It has lunar-like planetary processes – in this case, volcanism. It has the landscape; it looks like the Moon. And it has the scale of features astronauts will both be observing and exploring on the Moon.”

Iceland’s geology, like the Moon’s, includes rocks called basalts and breccias. Basalts are dark, fine-grained, iron-rich rocks that form when volcanic magma cools and crystalizes quickly. In Iceland, basalt lavas form from volcanoes and deep fissures. On the Moon, basalts can form from both volcanoes and lava pooling in impact basins. Breccias are angular fragments of rock that are fused together to create new rocks. In Iceland, volcanic breccias are formed from explosive volcanic eruptions and on the Moon, impact breccias are formed from meteoroids impacting the lunar surface.

Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training.

Cindy Evans

Cindy Evans

Artemis Geology Training Lead

Along with exploring the geology of Iceland, the astronauts practiced navigation and expeditionary skills to prepare them for living and working together, and gave feedback to instructors, who used this as an opportunity to hone their instruction and identify sites for future Artemis crew training. They also put tools to the test, learning to use hammers, scoops, and chisels to collect rock samples.

iceland-artemisiitraining-a.jpg?w=2048
Caption: The Artemis II crew, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, and backup crew members NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons trek across the Icelandic landscape during their field geology training.
NASA/Robert Markowitz

“The tools we used during the Apollo missions haven’t changed that much for what we’re planning for the Artemis missions,” said Trevor Graff, exploration geologist and the hardware and testing lead on the Artemis science team at NASA Johnson. “Traditionally, a geologist goes out with just standard tool sets of things like rock hammers and scoops or shovels to sample the world around them, both on the surface and subsurface.”

The Artemis tools have a bit of a twist from traditional terrestrial geology tools, though. Engineers must take into consideration limited mass availability during launch, how easy it is to use a tool while wearing pressurized gloves, and how to ensure the pristine nature of the lunar samples is preserved for study back on Earth.

There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface.

Angela Garcia

Angela Garcia

Exploration Geologist and Artemis II Science Officer

Researcher using hand-held tools to take a sample from a rugged basalt face. She wears outdoor work clothes and rain gear. In the background, dark grey dust and rocks stretch to the horizon. The landscape is unvegetated and entirely greyscale.
Caption: Angela Garcia, Artemis II science officer and exploration geologist, demonstrates how to use a rock hammer and chisel to dislodge a rock sample from a large boulder during the Artemis II field geology training in Iceland.
NASA/Robert Markowitz

“There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface,” said Angela Garcia, exploration geologist and an Artemis II science officer at NASA Johnson.

The Artemis II test flight will be NASA’s first mission with crew under Artemis and will pave the way to land the first woman, first person of color, and first international partner astronaut on the Moon on future missions. The crew will travel approximately 4,600 miles beyond the far side of the Moon. While the Artemis II astronauts will not land on the surface of the Moon, the geology fundamentals they develop during field training will be critical to meeting the science objectives of their mission.

These objectives include visually studying a list of surface features, such as craters, from orbit. Astronauts will snap photos of the features, and describe their color, reflectivity, and texture — details that can reveal their geologic history.

iceland-artemisiitraining-f.jpg?w=2048
The Artemis II crew astronauts, their backups, and the geology training field team pose in a valley in Iceland’s Vatnajökull national park. From front left: Angela Garcia, Jacob Richardson, Cindy Evans, Jenni Gibbons, Jacki Mahaffey, back row from left: Jeremy Hansen, John Ramsey, Reid Wiseman, Ron Spencer, Scott Wray, Kelsey Young, Patrick Whelley, Christina Koch, Andre Douglas, Jacki Kagey, Victor Glover, Rick Rochelle (NOLS), Trevor Graff.

“Having humans hold the camera during a lunar pass and describe what they’re seeing in language that scientists can understand is a boon for science,” said Kelsey Young, lunar science lead for Artemis II and Artemis II science officer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In large part, that’s what we’re training astronauts to do when we take them to these Moon-like environments on Earth.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The crew of a Surjet private air service flight had an unusual encounter on December 23 while returning to Fort Lauderdale. Flight attendant Cassandra Martin, along with two pilots, was onboard the aircraft flying over the Bahamas when an unexpected event caught their attention.

      “I suddenly heard air traffic control say, ‘We have a foreign object; can you please identify it?'” Martin recounted to NBC Miami. 
      Curious, she looked out the window. “I glanced to the left, and the pilot noticed three objects, though I only saw one. I quickly grabbed my phone, pressed it against the window, and tried to record a video of the object,” she explained. 
      Martin described the orb as white, later shifting to a faint green hue, almost as though surrounded by an electric field. The object followed their flight for about 45 minutes before disappearing. 

      What made the sighting extraordinary was the altitude. The jet was cruising at approximately 43,000 to 45,000 feet, yet the orb was far above the aircraft and still managed to track it for the extended duration. 
      The orb’s speed and maneuverability ruled out possibilities such as a balloon or a consumer drone. Unless the orb is of extraterrestrial origin, the orb might be a craft or drone equipped with highly advanced technology not yet publicly known, akin to recent reports of sophisticated drones spotted across the U.S. 
      This remarkable incident follows a December 16, 2024 sighting aboard United Airlines flight UA2359 from Chicago to Newark. During that flight, a passenger filmed several unidentified orbs at altitudes between 40,000 and 50,000 feet. Additionally, reports surfaced from at least four commercial airline pilots who witnessed mysterious, colorful, circular lights moving at extreme speeds over Oregon in the same month. 
      These repeated sightings raise questions: Are they advanced black projects hidden from public knowledge or evidence of something extraterrestrial? Regardless of their origin, the increasing reports of advanced drones and strange orbs suggest that something significant is occurring. View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      LMS instrument aboard the Blue Ghost Lander heading to Mare Crisium in mid-January
      As part of its Artemis campaign, NASA is developing a series of increasingly complex lunar deliveries and missions to ultimately build a sustained human presence at the Moon for decades to come. Through the agency’s CLPS (Commercial Lunar Payload Services) initiative, commercial provider Firefly’s Blue Ghost lander will head to the Moon’s Mare Crisium for a 14-day lunar lander mission, carrying NASA science and technology that will help understand the lunar subsurface in a previously unexplored location.
      From within the Mare Crisium impact basin, the SwRI-led Lunar Magnetotelluric Sounder (LMS) may provide the first geophysical measurements representative of the bulk of the Moon. Most of the Apollo missions landed in the region of linked maria to the west (left image), whose crust was later shown to be compositionally distinct (right image) as exemplified by the concentration of the element thorium. Mare Crisium provides a smooth landing site on the near side of the Moon outside of this anomalous region. NASA Developed by the Southwest Research Institute (SwRI), NASA’s Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles, two-thirds of the way to the lunar center. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
      Magnetotellurics uses natural variations in surface electric and magnetic fields to calculate how easily electricity flows in subsurface materials, which can reveal their composition and structure.
      “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of purposes, including to find oil, water, and geothermal and mineral resources, as well as to understand geologic processes such as the growth of continents,” said SwRI’s Dr. Robert Grimm, principal investigator of LMS. “The LMS instrument will be the first extraterrestrial application of magnetotellurics.”
      Mare Crisium is an ancient, 350-mile-diameter impact basin that subsequently filled with lava, creating a dark spot visible on the Moon from Earth. Early astronomers who dubbed dark spots on the moon “maria,” Latin for seas, mistook them for actual seas.
      Mare Crisium stands apart from the large, connected areas of dark lava to the west where most of the Apollo missions landed. These vast, linked lava plains are now thought to be compositionally and structurally different from the rest of the Moon. From this separate vantage point, LMS may provide the first geophysical measurements representative of most of the Moon.
      The Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles or two-thirds of the lunar radius. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
      NASA’s Goddard Space Flight Center The LMS instrument ejects cables with electrodes at 90-degree angles to each other and distances up to 60 feet. The instrument measures voltages across opposite pairs of electrodes, much like the probes of a conventional voltmeter. The magnetometer is deployed via an extendable mast to reduce interference from the lander. The magnetotelluric method reveals a vertical profile of the electrical conductivity, providing insight into the temperature and composition of the penetrated materials in the lunar interior.
      “The five individual subsystems of LMS, together with connecting cables, weigh about 14 pounds and consume about 11 Watts of power,” Grimm said. “While stowed, each electrode is surrounded by a ‘yarn ball’ of cable, so the assembly is roughly spherical and the size of a softball.”
      The LMS payload was funded and will be delivered to the lunar surface through NASA’s CLPS initiative. Southwest Research Institute based in San Antonio built the central electronics and leads the science investigation. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided the LMS magnetometer to measure the magnetic fields, and Heliospace Corp. provided the electrodes used to measure the electrical fields.
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Media Contact: Rani Gran
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Jan 10, 2025 EditorRob GarnerContactRani GranLocationGoddard Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Earth's Moon Goddard Space Flight Center View the full article
    • By NASA
      Official portrait of Adam Schlesinger.NASA/Bill Stafford NASA has selected Adam Schlesinger as manager for CLPS (Commercial Lunar Payload Services). Schlesinger previously served as the Gateway Program habitation and logistics outpost project lead engineer at Johnson Space Center.

      “I am honored and tremendously excited to take on this new role as NASA continues to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry,” Schlesinger said.

      Schlesinger brings more than 20 years’ experience to NASA human space flight programs. Prior to supporting Gateway, Mr. Schlesinger managed the Advanced Exploration Systems Avionics and Software Project, leading a multi-center team to develop and advance several innovative technologies that were targeted for future NASA exploration missions. Mr. Schlesinger also established and led a variety of key public/private partnerships with commercial providers as part of the Next Space Technologies for Exploration Partnerships-2 activities.

      Mr. Schlesinger began his NASA career as a co-op in the Avionic Systems Division and has served in multiple positions within the Engineering and Exploration Architecture, Integration, and Science Directorates, each with increasing technical leadership responsibilities. Mr. Schlesinger earned his bachelor’s degree in electrical engineering from the University of Michigan and a master’s degree in electrical and computer engineering from the Georgia Institute of Technology.

      “Adam is an outstanding leader and engineer, and I am extremely pleased to announce his selection for this position,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His wealth of experience in human spaceflight, commercial partnerships, and the development and operations of deep-space spacecraft will be a huge asset to CLPS.”

      Throughout his career, Schlesinger has been recognized for outstanding technical achievements and leadership, including multiple NASA Exceptional Achievement Medals, Rotary National Award for Space Achievement Early Career Stellar Award and Middle Career Stellar Award nominee, JSC Director’s Commendation Award, Advanced Exploration Systems Innovation Award, and NASA Early Career Achievement Medal.
      View the full article
    • By NASA
      To put boots on the Moon—and keep them there—will require bold thinkers ready to tackle the challenges of tomorrow. 

      That’s why NASA’s Office of STEM Engagement at Johnson Space Center in Houston is on a mission to empower the next generation of explorers in science, technology, engineering, and mathematics (STEM). 

      Through the High School Aerospace Scholars (HAS) program, Texas juniors have the opportunity to immerse themselves in space exploration through interactive learning experiences. 

      “HAS is such an important program because we introduce students to the multitude of careers and experiences that contribute to space exploration,” said NASA HAS Activity Manager Jakarda Varnado. “We go beyond asking students who they want to be when they grow up and ask what problems they want to solve.” 

      Meet Former HAS Student Madeline King

      Madeline King always knew she wanted a career in STEM, with a dream of working at NASA influencing her decision to pursue a degree in Engineering.  

      Before joining HAS, King thought scientists mainly worked in labs and engineers focused on design. But the HAS program revealed a different reality—scientists and engineers often collaborated on interdisciplinary projects, sometimes even sharing roles.   
      Official portrait of Madeline King.NASA The program broadened King’s perspective on the diverse paths a STEM degree can lead to. It showed her that careers at NASA offer opportunities across various fields and disciplines. 

      King said participating in HAS helped to strengthen her problem-solving skills and ability to think creatively. The program required students to tackle complex technical tasks independently, emphasizing self-directed learning. King describes HAS as fun, challenging, and engaging, which helped her excel in technical roles.  

      “Learning to digest and internalize this information is a skill I continue to use when getting up to speed in new groups or taking on projects outside my current skill set,” said King.  

      Though King joined HAS during COVID-19, which limited in-person interactions, the experience still made an impact. Her mentors also offered insights into graduate school options, helping her weigh the benefits of advanced degrees against gaining hands-on experience at NASA.  

      The program opened doors to internships at Johnson in the Engineering Robotics and the Avionics Systems Integration Division. Now, she is studying mechanical engineering at the University of Houston, bringing passion and experience in electronics, robotics, education, project management, and aviation. 

      “Early on in my internship journey, HAS shined on my resume,” she said. “It demonstrated that I already had experience with NASA’s culture, values, and mission.” 
      Looking forward, King envisions herself as a flight controller, contributing to both the International Space Station Program and the Artemis campaign. Driven by her passion for NASA’s mission, King is just beginning her journey and is eager to be part of the future of space exploration. 

      “My internships since HAS have allowed me to make small contributions to both of these missions, and I’m excited to specialize as a full-time engineer,” said King.  

      Meet Caroline Vergara

      As a first-generation student, Caroline Vergara lacked the resources to fully explore her interests in aerospace engineering, let alone envision what that career might look like. That all changed when she was accepted into NASA’s HAS program. 

      “The exposure to real-world innovation ignited my desire to be part of something bigger, something that pushes the boundaries of human knowledge and capability,” she said.  
      Caroline Vergara announces the launch of the model rocket she built during her time in the HAS program. NASA/David DeHoyos Touring NASA facilities and watching engineers work on projects opened her eyes to the possibilities in STEM. Today, Vergara is a propulsion design engineering intern at United Launch Alliance, contributing to the Vulcan rocket as a Brooke Owens Fellow. 

      Vergara initially thought working in STEM was mostly about writing equations or running simulations but HAS showed her it is so much more. “A STEM career is about curiosity, collaboration, and the power to change the world,” she said. 

      During the program, Vergara joined a team of students to tackle a mission simulation project. They called themselves “Charlie and the Rocket Factory” and designed a prototype rocket together. Working with peers from all over the country showed her the power of diverse perspectives. She experienced firsthand what it was like to be part of a team with a shared vision, working toward something bigger than themselves. 

      Vergara also discovered her love for 3D printing and computer-aided design through HAS. She spent hours fine-tuning designs, fascinated by the process of turning digital models into physical reality. 

      Her experience with HAS also sparked a desire to give back. She returned to her hometown to share her story and encourage other students to pursue STEM. Partnering with Johnson Community Engagement Lead Jessica Cordero, she organized video conferences with NASA engineers on International Women in Engineering Day to inspire a new wave of students to be part of space exploration. 

      “The aerospace industry is entering a new space age, and we have the unique opportunity to put humans back on the Moon and explore beyond,” she said. 

      Her advice to the Artemis Generation is: “Go for it! You could be part of the generation that changes humanity’s destiny.” 
      Caroline Vergara, University of Houston Class of 2025. As a mechanical engineering honors student at the University of Houston and chief engineer of Space City Rocketry, Vergara envisions contributing to the Artemis campaign and advancing NASA’s mission to explore the cosmos. 

      “My dream is to contribute to space exploration efforts that put humans back on the Moon and beyond, and to one day work in Mission Control Center, where I can help guide those historic missions into the future.” 

      Meet Iker Aguirre

      For Iker Aguirre, the spark that ignited his journey toward a career in aerospace was lit by a passing conversation during his freshman year of high school. A senior classmate described the HAS program as a once-in-a-lifetime experience that cemented his passion for aerospace. That moment stayed with Aguirre, and when the opportunity arose, he did not hesitate to apply. 
      Iker Aguirre inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. “HAS showed me that in order to accomplish something as complex as Artemis, you need a well-rounded set of teams and individuals,” he said. “You don’t need to study aerospace to be in the aerospace industry!” 

      In 2020, Aguirre participated during the remote-only version of HAS, but he recalls that the program still gave him a much deeper understanding of the spaceflight industry. 

      Despite already being interested in aerospace, Aguirre says HAS broadened his horizons, showing him the diverse pathways into the field. Through collaborative projects with peers across Texas, he discovered that solving the challenges of space exploration requires more than just aerospace engineers.  

      The program’s emphasis on teamwork left a lasting impression. During his time with HAS, Aguirre found himself working alongside students from different backgrounds, each bringing unique perspectives to problem-solving. It introduced him to dedicated and passionate people with various personalities and cultures who all shared similar dreams and aspirations as him.  

      Aguirre credits HAS with not only refining his technical skills but also shaping his approach to innovation and teamwork. That experience paid off as he moved through his academic and professional journey, including Pathways program internships with NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama.  

      “Getting connections at NASA through HAS helped me open many doors so far,” said Aguirre. “I met many good friends through HAS and my internship at Johnson, which I value to this day.” 

      Now pursuing a degree in rocket propulsion, with a focus on turbomachinery design, Aguirre remains committed to advancing space exploration. He hopes to contribute to humanity’s mobility in space, tackling challenges in rocket engine feed systems.  
      Iker Aguirre at NASA’s Johnson Space Center during his HAS internship. Through HAS, Aguirre found not just an educational program, but a community and a purpose. “My journey will forever be interlinked with NASA’s core values of benefiting humanity on and off the Earth,” he said. “I hope to inspire others just as much as the people who inspired me through my journey!” 
      View the full article
  • Check out these Videos

×
×
  • Create New...