Jump to content

NASA to Develop Lunar Time Standard for Exploration Initiatives 


NASA

Recommended Posts

  • Publishers
The Moon is pictured the day before its Full Moon phase
The Moon is pictured on Dec. 7, 2022, the day before its Full Moon phase from the International Space Station as it orbited above the southern Indian Ocean.
Credit: NASA

NASA will coordinate with U.S. government stakeholders, partners, and international standards organizations to establish a Coordinated Lunar Time (LTC) following a policy directive from the White House in April. The agency’s Space Communication and Navigation (SCaN) program is leading efforts on creating a coordinated time, which will enable a future lunar ecosystem that could be scalable to other locations in our solar system.

The lunar time will be determined by a weighted average of atomic clocks at the Moon, similar to how scientists calculate Earth’s globally recognized Coordinated Universal Time (UTC). Exactly where at the Moon is still to be determined, since current analysis indicates that atomic clocks placed at the Moon’s surface will appear to ‘tick’ faster by microseconds per day. A microsecond is one millionth of a second. NASA and its partners are currently researching which mathematical models will be best for establishing a lunar time.

To put these numbers into perspective, a hummingbird’s wings flap about 50 times per second. Each flap is about .02 seconds, or 20,000 microseconds. So, while 56 microseconds may seem miniscule, when discussing distances in space, tiny bits of time add up.

“For something traveling at the speed of light, 56 microseconds is enough time to travel the distance of approximately 168 football fields,” said Cheryl Gramling, lead on lunar position, navigation, timing, and standards at NASA Headquarters in Washington. “If someone is orbiting the Moon, an observer on Earth who isn’t compensating for the effects of relativity over a day would think that the orbiting astronaut is approximately 168 football fields away from where the astronaut really is.”

As the agency’s Artemis campaign prepares to establish a sustained presence on and around the Moon, NASA’s SCaN team will establish a time standard at the Moon to ensure the critical time difference does not affect the safety of future explorers. The approach to time systems will also be scalable for Mars and other celestial bodies throughout our solar system, enabling long-duration exploration.

As the commercial space industry grows and more nations are active at the Moon, there is a greater need for time standardization. A shared definition of time is an important part of safe, resilient, and sustainable operations,” said Dr. Ben Ashman, navigation lead for lunar relay development, part of NASA’s SCaN program.

NASA’s SCaN program serves as the office for the agency’s space communications operations and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather and the effects of climate change, support lunar exploration, and uncover the solar system and beyond.

Learn more about NASA’s plan to return to the Moon at:

https://www.nasa.gov/humans-in-space/artemis

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Deputy Administrator Pam Melroy (left) and Center Director at NASA’s Ames Research Center Eugene Tu (right) hear from Ames employees Sept. 16, 2024.NASA/Brandon Torres Navarrete NASA Deputy Administrator Pam Melroy spent time at NASA’s Ames Research Center in California’s Silicon Valley, on Sept. 16, 2024, engaging with center leaders and employees to discuss strategies that could drive meaningful changes to ensure NASA remains the preeminent institution for research, technology, and engineering, and to lead science, aeronautics, and space exploration for humanity. Melroy’s visit also provided an opportunity to meet with early- and mid-career employees, who shared their perspectives and feedback.

      View the full article
    • By Space Force
      U.S. Space Force senior leaders discussed the Personnel Management Act during a panel at the Air and Space Force’s Air, Space and Cyber Conference at National Harbor, Maryland, Sept. 18.

      View the full article
    • By NASA
      On Sept. 18, 2024, five Congressional Gold Medals were awarded to women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program.Credit: NASA NASA Administrator Bill Nelson released his remarks as prepared for Wednesday’s Hidden Figures Congressional Gold Medal ceremony in Washington. The awards recognized the women who contributed to the space race, including the NASA mathematicians who helped land the first astronauts on the Moon under the agency’s Apollo Program.
      “Good afternoon.
      “The remarkable things that NASA achieves…and that America achieves…build on the pioneers who came before us.
      “People like the women of Mercury, Gemini, and Apollo.
      “People like Mary Jackson. Dr. Christine Darden. Dorothy Vaughan. Katherine Johnson.
      “Thanks to all the Members of Congress who made today possible. The late Congresswoman Eddie Bernice Johnson, who we miss, and who led the effort in 2019 alongside Senator Chris Coons to bring these medals to life. Thanks to the champions for the legislation, then-Senator Kamala Harris, Senators Lisa Murkowski and Shelley Moore Capito, and Congressman Frank Lucas.
      “The women we honor today made it possible for Earthlings to lift beyond the bounds of Earth, and for generations of trailblazers to follow.
      “We did not come this far only to come this far.
      “We continue this legacy, as one member of the audience here with us does every single day – the remarkable Andrea Mosie.
      “Andrea, who has worked at NASA for nearly 50 years, is the lead processor for the Apollo sample program. She oversees the Moon rocks and lunar samples NASA brought back from Apollo, 842 pounds of celestial science! These samples are national treasures. So is Andrea.
      “The pioneers we honor today, these Hidden Figures – their courage and imagination brought us to the Moon. And their lessons, their legacy, will send us back to the Moon… and then…imagine – just imagine – when we leave our footprints on the red sands of Mars.
      “Thanks to these people who are part of our NASA family, we will continue to sail on the cosmic sea to far off cosmic shores.”
      For more information about NASA missions, visit:
      https://www.nasa.gov
      -end-
      Meira Bernstein / Cheryl Warner
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Sep 18, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Apollo View the full article
    • By NASA
      5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.
      One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation. Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory. The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology. The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.
      Syncing Up Across the Solar System
      “Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”
      If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.
      Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.
      The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.
      While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.
      Syncing Clocks, Linking Telescopes to See More than Ever Before
      When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.
      “If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”
      The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.
      For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.
      The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.
      An Optical Atomic Clock Built for Space Travel
      Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.
      While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.
      The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman “Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.
      The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.
      “When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”
      The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.
      More on cutting-edge technology development at NASA Goddard By Matthew Kaufman, with additional contributions from Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Communicating and Navigating with Missions Goddard Space Flight Center Technology View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.
      Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.
      The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.
      The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.
      As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities.   This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
      Near Space Network Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...