Jump to content

The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon


Recommended Posts

  • Publishers
Posted
23 Min Read

The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon

A full moon rises over a bank of clouds in the night sky.

The Next Full Moon is a Partial Lunar Eclipse; a SuperMoon; the Corn Moon; the Harvest Moon; the Fruit or Barley Moon; the end of Ganesh Chaturthi and the start of Pitru Paksha; Madhu Purnima; the Mid-Autumn, Mooncake, or Reunion Festival Moon; Chuseok; and Imomeigetsu or the Potato Harvest Moon.

The full Moon will be Tuesday night, September 17, 2024, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars will show this full Moon on Wednesday based on Greenwich or Universal Time. The Moon will appear full for about three days, from Monday evening through Thursday morning.

This will be a partial lunar eclipse. The Moon will start entering the Earth’s partial shadow at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with only the top 8 percent of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.

The main phases of the Moon are illustrated in a horizontal row, with the new moon on September 2nd, first quarter on September 11th, full moon on September 17th, and the third quarter moon on September 24th.
The phases of the Moon for September 2024.
NASA/JPL-Caltech

This will be a supermoon. The term “supermoon” was coined by astrologer Richard Nolle in 1979 as either a new or full Moon that occurs when the Moon is within 90% of its closest to Earth. Since we can’t see new Moons, what has the public’s attention are full supermoons, the biggest and brightest Moons of the year. Although different publications use different thresholds for deciding which full Moons qualify, most agree this will be the second of four consecutive supermoons (effectively tied with the full Moon in October for the closest of the year).

The Maine Farmer’s Almanac first published “Indian” names for the full Moons in the 1930s and these names have become widely known and used. According to this almanac, as the full Moon in September the Algonquin tribes in what is now the northeastern USA called this the Corn Moon, as this was the time for gathering their main staple crops of corn, pumpkins, squash, beans, and wild rice.

As the full Moon closest to the autumnal equinox, this is the Harvest Moon. The first known written use of this name in the English language (per the Oxford English Dictionary) was in 1706. During the fall harvest season farmers sometimes need to work late into the night by moonlight. On average moonrise is about 50 minutes later each night. Around the Harvest Moon this time is shorter, about 25 minutes for the latitude of Washington, DC, and only 10 to 20 minutes farther north in Canada and Europe.

Other European names for this full Moon are the Fruit Moon, as a number of fruits ripen as the end of summer approaches, and the Barley Moon, from the harvesting and threshing of barley.

For Hindus, this full Moon marks the end of Ganesh Chaturthi and the start of Pitru Paksha. Ganesh Chaturthi (also called Vinayaka Chaturthi or Vinayaka Chavithi) is a 10 or 11 day festival honoring the god Ganesha that ends with this full Moon. Ganesha is easily recognized by his elephant head and is worshiped as the god of beginnings, wisdom, arts and sciences, and as the remover of obstacles. Throughout the festival celebrants offer food, sweets, and prayers to clay statues of Ganesha at home and on public stages. Traditions include chanting of Vedic hymns and Hindu texts, prayers, and fasting. On the last day (near the full Moon), people carry the statues to a nearby river or ocean and immerse them. As the clay dissolves, Ganesha is believed to return to his parents, the god Shiva and goddess Parvati, on Mount Kailash.

Pitru Paksha (fortnight of the ancestors) is a 15 days long festival that ends with the new Moon. During this time, Hindus honor their ancestors (pitrs) with rituals, food offerings, and scripture reading. Pitru Paksha is also known by a number of other names.

For some Buddhists in Bangladesh and Thailand this full Moon is Madhu Purnima, the Honey Full Moon Festival or the Honey-offering Festival. The legend is that when the Buddha was trying to bring peace between two factions in a forest, an elephant and a monkey fed him, with the elephant offering fruit and the monkey offering a honeycomb.

In China, Vietnam, and some other Asian countries, this full Moon corresponds with the Mid-Autumn Festival, a traditional harvest festival. In China, other names for this festival include the Moon Festival, the Mooncake Festival, and the Reunion Festival (with wives visiting their parents then returning to celebrate with their husbands and his parents). Part of the festival includes offerings to the Moon Goddess Chang’e (the name the China National Space Agency gives their lunar missions).

In Korea, this full Moon corresponds with the harvest festival Chuseok, during which Koreans return to their traditional hometowns to pay respect to the spirits of their ancestors.

This full Moon corresponds with the first of two Japanese Tsukimi or “Moon-Viewing” festivals, also called Imomeigetsu (which translates as “potato harvest Moon”) because of the tradition of offering sweet potatoes to the Moon. These festivities have become so popular that they are often extended for several days after the full Moon.

In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the eighth month of the Chinese year of the Dragon and Rabi’ al-Awwal in the Islamic calendar, the month in which many Muslims celebrate Mawlid, the birth of the Prophet Muhammad. This full Moon is near the middle of Elul in the Hebrew calendar. Elul is a time of preparation for the High Holy Days of Rosh Hashanah and Yom Kippur. Customs include granting and asking others for forgiveness as well as beginning or ending all letters with the wish that the recipient will have a good year.

As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Go out and observe the Moon, enjoy this harvest season (including corn, fruit, and sweet potatoes, and honey), remember your ancestors, stay in touch with your parents, and forgive and ask forgiveness. Here’s wishing you a good year!

Comet C/2023 A3 (Tsuchinshan-ATLAS)

Pay attention to the news about Comet C/2023 A3 (Tsuchinshan-ATLAS)! There are a number of “ifs” so we don’t like to raise expectations. Similar visitors from the Oort Cloud have broken apart and fizzled out as they passed close to the Sun. If this comet survives its passage by the Sun (closest approach on September 27, 2024) and if the amount of gas and dust it gives off does not decrease significantly, this might be one of the best comets in a long time. If it strongly scatters sunlight towards the Earth it might even be visible in the glow of dusk just after its closest approach to Earth on October 12.

From the Washington, DC area and similar latitudes, this comet will be above the horizon before morning twilight begins from September 22 through October 4, with the current brightness curve predicting a steady increase in brightness from about visual magnitude 4 to near 3 (the smaller the number, the brighter the object). As it brightens it may be visible under dark sky conditions and even more impressive through binoculars or a telescope, although towards the start and end of this period it may be too low on the horizon to see when the sky is completely dark.  

Between about October 4 and October 11 the Sun’s glare will mask visibility from the Northern Hemisphere. Check your local news or web sites for viewing information for your latitude. For example, Sky and Telescope reports that Southern Hemisphere skywatchers should fare better.

Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM EDT. Around closest approach the comet’s brightness is predicted to peak at about visual magnitude 3 (similar to many stars). Forward scattering might increase the brightness significantly, possibly as high as -1 (brighter than every star except Sirius). How bright the comet actually appears will depend upon how much gas and dust it is giving off, which can change quickly. Also, brightness comparisons between comets and stars can be misleading as the light of the comet is spread out making it less distinct than a star with the same brightness.

The best time to look should be the evenings on and shortly after October 12 with the comet above the western horizon after sunset. The evening of October 12 the comet will be 4 degrees above the western horizon as evening twilight ends, similar in altitude and to the right of Venus. The comet is expected to dim as it moves away from the Earth, but will appear higher in a darker sky and set later each evening, which could make it easier to see. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. The brightness will decrease to about magnitude 6 by the end of October.

Meteor Showers

During this lunar cycle four minor meteors showers are predicted to peak at 5 or fewer visible meteors per hour (under ideal viewing conditions), making them basically not visible from our light-polluted urban areas.

Evening Sky Highlights

On the evening of Tuesday, September 17 (the evening of the full Moon), as twilight ends (at 8:10 PM EDT), the rising Moon will be 11 degrees above the east-southeastern horizon with Saturn to the upper right at 14 degrees above the horizon. Later in the evening the partial shadow of the Earth will cover a small upper part of the Moon. Bright Venus will be 2 degrees above the west-southwestern horizon with the star Spica on the horizon to the lower left. The bright star closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 87 degrees above the western horizon. Vega is part of the Summer Triangle along with Deneb and Altair. It is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.

As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left along the west-southwestern horizon, appearing slightly higher each evening. The waxing Moon will pass by Venus on October 5, Antares on October 7, and Saturn on October 14. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM. Assuming it survives its pass by the Sun on September 27 and depending upon how much gas and dust it gives off, it could be a good show in the evenings on and after October 12. See the comet summary above and keep an eye on the news for updates on this comet.

By the evening of Thursday, October 17 (the evening of the full Moon after next), as twilight ends (at 7:24 PM EDT), the rising Moon will be 9 degrees above the eastern horizon. Saturn will be 27 degrees above the southeastern horizon. Bright Venus will be 6 degrees above the west-southwestern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 22 degrees above the western horizon. The bright star closest to overhead will be Deneb at 80 degrees above the northeastern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.

Morning Sky Highlights

On the morning of Wednesday, September 18 (the morning of the night of the full Moon), as twilight begins (at 5:55 AM EDT), the setting full Moon will be 15 degrees above the west-southwestern horizon. The brightest planet in the sky will be Jupiter at 71 degrees above the south-south eastern horizon. Near Jupiter will be Mars at 61 degrees above the east-southeastern horizon. Saturn will be below the Moon at 1 degree above the western horizon. The bright star appearing closest to overhead will be Capella, the brightest star in the constellation Auriga the charioteer, at 80 degrees above the northeastern horizon. Although we see Capella as a single star (the 6th brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 lightyears from us.

As this lunar cycle progresses, Jupiter, Mars, Saturn, and the background of stars will appear to shift westward each evening. After September 19 Saturn set before morning twilight begins. The waning Moon will pass by the Pleiades star cluster on September 22, Mars on September 25, Pollux on September 26, and Regulus on September 29. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins from September 22 through October 4. Comets are notoriously difficult to predict, but if the amount of gas and dust it gives off remains constant it should increase in brightness each morning. See the comet summary above and keep an eye on the news for updates on this comet.

By the morning of Thursday, October 17 (the morning of the full Moon after next), as twilight begins (at 6:22 AM EDT), the setting full Moon will be 11 degrees above the western horizon. The brightest planet in the sky will be Jupiter at 63 degrees above the west-southwestern horizon. Mars will be at 72 degrees above the south-southeastern horizon. The bright star appearing closest to overhead will be Pollux, the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini, at 75 degrees above the southeastern horizon. Pollux is an orange tinted star about 34 lightyears from Earth. It is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.

Detailed Daily Guide

Here for your reference is a day-by-day listing of celestial events between now and the full Moon on October 17, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app or a star-watching guide from a local observatory, news outlet, or astronomy club.

Saturday night, September 14, is International Observe the Moon Night! See https://moon.nasa.gov/observe-the-moon-night/about/overview/ for more information.

Our 24 hour clock is based on the average length of the solar day. Solar noon on Sunday, September 15 to solar noon on Monday, September 16, will be the shortest solar day of the year, 23 hours, 59 minutes, and 38.6 seconds long.

Monday night into Tuesday morning, September 16 to 17, Saturn will appear near the full Moon. As evening twilight ends (at 8:12 PM EDT) Saturn will be 6 degrees to the left of the Moon. When the Moon reaches its highest for the night (at 12:17 AM) Saturn will be 4 degrees to the upper left. By the time morning twilight begins (at 5:54 AM) the Moon will be 1 degree above the west-southwestern horizon with Saturn 1 degree above the Moon. For parts of western North America and across the Pacific Ocean towards Australia the Moon will pass in front of Saturn. See http://lunar-occultations.com/iota/planets/0917saturn.htm for a map and information on the areas that will see this occultation.

Tuesday morning, September 17, will be the last morning that Mercury will be above the horizon as morning twilight begins (at 5:54 AM EDT).

As mentioned above, the full Moon will be Tuesday night, September 17, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars are based on Greenwich or Universal Time and will show this full Moon on Wednesday. The Moon will appear full for about three days from Monday evening through Thursday morning.

This will be a partial lunar eclipse. The Moon will start entering the partial shadow of the Earth at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with just the top 8.4% of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.

This will be the second of four consecutive supermoons, appearing larger than last month’s supermoon and effectively tied with the full Moon in October for the closest full Moon of the year.

Tuesday and Wednesday evenings, September 17 and 18, the star Spica will appear a little over 2 degrees from the bright planet Venus. On Tuesday evening as evening twilight ends (at 8:10 PM EDT) Spica will be to the lower left of Venus and on the verge of setting on the west-southwestern horizon. Wednesday evening Spica will be a few hundredths of a degree closer and will appear below Venus, but will set about 2 minutes before evening twilight ends.

Wednesday morning September 18, at 9:29 AM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.

Thursday morning, September 19, will be the last morning the planet Saturn will be above the western horizon as morning twilight begins.

If you are interested in spotting the planet Neptune through a telescope, Friday evening, September 20, will be when it will be at its closest and brightest for the year. Neptune will reach its highest in the sky early Saturday morning (at 1:02 AM EDT).

Saturday night into Sunday morning, September 21 to 22, the Pleiades star cluster will appear near the waning gibbous Moon. The Pleiades will be 5 degrees to the lower left as they rise on the east-northeastern horizon (at 9:23 PM EDT), 1.5 degrees to the upper left by the time the Moon reaches its highest for the night (at 4:44 AM), and less than 1 degree to the upper left as morning twilight begins (at 5:59 AM). The Moon will actually pass through the Pleiades (at about 8 AM) when daylight will mask these stars from view.

Sunday morning, September 22, will be the first morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting it at visual magnitude 4. Unless it breaks apart, this comet is likely to brighten each morning until October 4 (after which it will no longer be above the horizon before twilight begins).

Sunday morning, September 22, at 8:44 AM EDT, will be the autumnal equinox, the astronomical end of summer and start of fall.

Monday night into Tuesday morning, September 23 to 24, the bright planet Jupiter will appear to the lower right of the waning half-full Moon. Jupiter will be 6 degrees to the lower right as it rises on the east-northeastern horizon (at 10:54 PM EDT). Jupiter will shift slightly clockwise as it moves away from the Moon.

Thursday afternoon, September 24, the waning Moon will appear half-full as it reaches its last quarter at 2:50 PM EDT (when we can’t see it).

Wednesday morning, September 25, the planet Mars will appear below the waning crescent Moon. Mars will be 6 degrees below the Moon as it rises on the east-northeastern horizon (at 12:16 AM EDT). Mars will be 5 degrees to the lower right as morning twilight begins (at 6:01 AM).

Thursday morning, September 26, the star Pollux (the brighter of the twin stars in the constellation Gemini the twins) will appear near the waning crescent Moon. Pollux will be 3 degrees to the lower left as it rises on the northeastern horizon (at 12:47 AM EDT) and will be 2 degrees to the upper left by the time morning twilight begins (at 6:02 AM).

Friday afternoon, September 27, at around 2 PM EDT, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to the Sun. This comet has an inbound orbital period of millions of years and may gain enough energy from this flyby of the Sun to leave the solar system forever.

Sunday morning, September 29, the star Regulus will appear near the waning crescent Moon. As Regulus rises on the east-northeastern horizon (at 4:01 AM EDT) it will be 2.5 degrees to the lower right of the Moon. Morning twilight will begin 2 hours later (at 6:05 AM) with Regulus 3 degrees to the right.

Monday afternoon, September 30, the planet Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth, it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of twilight on the west-southwestern horizon towards the end of October (depending upon viewing conditions).

Wednesday, October 2, at 2:46 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and is usually not visible. For much of the Pacific Ocean as well as the southern part of South America, part of Antarctica, and a thin slice of the southwestern Atlantic, the Moon will block some of the Sun in a partial eclipse. For a narrow strip from the Pacific south of the Hawaiian Islands across the Pacific, part of Chile and Argentina, and into the southwestern Atlantic Ocean, the Moon will actually pass in front of the Sun, blocking most of it from view in an annular solar eclipse. Because the Moon will be at apogee (its farthest from the Earth) just 70 minutes later (at 3:56 PM) it will not block the entire Sun from view and this will not be a total solar eclipse.

The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Sundown on Wednesday, October 2, will be the start of Rosh Hashanah (the Head of the Year), the two-day Jewish New Year celebration that will end at sundown on Friday, October 4. Rosh Hashanah is the first of a series of holidays in Tishrei, the first month of the Hebrew calendar. The tenth day of Tishrei is Yom Kippur, the Day of Atonement. The 10 days from Rosh Hashanah to Yom Kippur, called the Days of Awe, are a time to reflect on the mistakes of the past year and make resolutions for the new year. The fifteenth day of Tishrei (close to the full Moon after next) is the start of the 7-day Sukkot holiday.

The ninth month of the Chinese year of the Dragon starts on Thursday, October 3.

In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday evening, October 3, will probably mark the beginning of Rabiʽ al-Thani, also known as Rabi’ al-Akhirah.

Friday, October 4, will be the last morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting a visual magnitude near 3, similar in brightness to many visible stars. It may be visible to the naked eye under dark sky conditions and even more impressive through binoculars or a telescope.

Saturday evening, October 5, you may be able to see the thin waxing crescent Moon 4.5 degrees to the lower left of the bright planet Venus. As evening twilight ends (at 7:41 PM EDT) the Moon will be a degree above the west-southwestern horizon. The Moon will set first 14 minutes later (at 7:55 PM).

Monday evening, October 7, the bright star Antares will appear 2 degrees to the right of the waxing crescent Moon. As evening twilight ends (at 7:38 PM EDT) the Moon will be 11 degrees above the southwestern horizon. Antares will set first about 20 minutes later (at 9 PM).

Thursday afternoon, October 10, the Moon will appear half-full as it reaches its first quarter at 2:55 PM EDT.

Saturday morning, October 12, at 11:10 AM, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth. If it survives its pass by the Sun this will likely be when it will be near its brightest. Although it will be on the horizon as evening twilight ends on Friday, our first chance to see it above the horizon as it emerges from the glow of dusk likely will be Saturday evening, when the comet will be 4 degrees above the western horizon as evening twilight ends (at 7:31 PM EDT), similar in altitude and to the right of Venus. Over the next few nights the comet will likely dim as it moves away from the Earth, but also appear higher in the sky and set later each evening, giving us more time and darker skies to look for this comet. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. Current brightness curves predict it will dim quickly and will be below magnitude 6 by the end of October. How bright the comet will be and how quickly it actually dims will depend upon the gas and dust it is giving off, which can vary quickly and unpredictably, but it could be a good show in the evenings after October 12.

Monday evening, October 14, the planet Saturn will appear near the waxing gibbous Moon. As evening twilight ends (at 7:28 PM EDT) Saturn will be 4 degrees to the upper right. The Moon will reach its highest for the night about 3.5 hours later (at 10:53 PM) with Saturn 5 degrees to the lower right. The pair will continue to separate, with Saturn setting first 5 hours after that (at 4:09 AM). For parts of Southern Asia and Africa the Moon will block Saturn from view, see http://lunar-occultations.com/iota/planets/1014saturn.htm for a map and information on the areas that will acually see this occultation.

Wednesday evening, October 16, at 8:57 PM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.

The full Moon after next will be Thursday morning, October 17, 2024, at 7:26 AM EDT. This will be late Wednesday night in the International Date Line West time zone and early Friday morning from New Zealand Time eastwards to the International Date Line. This will be the third of four consecutive supermoons (and the brightest by a tiny margin). The Moon will appear full for about 3 days around this time, from Tuesday evening through Friday morning.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
      Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
      On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options.  Consequently, the team placed ASTER into Safe Mode.  As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
      Image Credit: NASA Goddard MODIS Rapid Response Team
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The six SCALPSS cameras mounted around the base of Blue Ghost will collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images to produce a 3D view of the surface. Image courtesy of Firefly. Say cheese again, Moon. We’re coming in for another close-up.
      For the second time in less than a year, a NASA technology designed to collect data on the interaction between a Moon lander’s rocket plume and the lunar surface is set to make the long journey to Earth’s nearest celestial neighbor for the benefit of humanity.
      Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Firefly’s Blue Ghost — SCALPSS 1.1 — to produce a 3D view of the surface. An earlier version, SCALPSS 1.0, was on Intuitive Machines’ Odysseus spacecraft that landed on the Moon last February. Due to mission contingencies that arose during the landing, SCALPSS 1.0 was unable to collect imagery of the plume-surface interaction. The team was, however, able to operate the payload in transit and on the lunar surface following landing, which gives them confidence in the hardware for 1.1.
      The SCALPSS 1.1 payload has two additional cameras — six total, compared to the four on SCALPSS 1.0 — and will begin taking images at a higher altitude, prior to the expected onset of plume-surface interaction, to provide a more accurate before-and-after comparison.
      These images of the Moon’s surface won’t just be a technological novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
      How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure the effects of plume-surface interaction on the Moon in real time and help to answer these questions.
      “If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “It’s all part of an integrated engineering problem.”
      Under the Artemis campaign, the agency’s current lunar exploration approach, NASA is collaborating with commercial and international partners to establish the first long-term presence on the Moon. On this CLPS (Commercial Lunar Payload Services) initiative delivery carrying over 200 pounds of NASA science experiments and technology demonstrations, SCALPSS 1.1 will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
      The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to
      process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected lander-induced erosion they reveal probably won’t be very deep — not this time, anyway.
      One of the SCALPSS cameras is visible here mounted to the Blue Ghost lander.Image courtesy of Firefly. “Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
      But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances human landing systems as part of NASA’s plans to explore more of the lunar surface.
      “Those are going to be much larger than even Apollo. Those are large engines, and they could conceivably dig some good-sized holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      Share
      Details
      Last Updated Dec 19, 2024 EditorAngelique HerringLocationNASA Langley Research Center Related Terms
      General Explore More
      4 min read Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
      Article 6 hours ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 8 hours ago 2 min read An Evening With the Stars: 10 Years and Counting 
      Article 8 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      As 1969, an historic year that saw not just one but two successful human lunar landings, drew to a close, NASA continued preparations for its planned third Moon landing mission, Apollo 13, then scheduled for launch on March 12, 1970. The Apollo 13 prime crew of Commander James A. Lovell, Command Module Pilot (CMP) Thomas K. “Ken” Mattingly, and Lunar Module Pilot (LMP) Fred W. Haise, and their backups John W. Young, John L. “Jack” Swigert, and Charles M. Duke, continued intensive training for the mission. NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, favored by geologists because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. The Apollo 13 Saturn V rolled out to its launch pad.

      Apollo 11
      The Apollo 11 astronauts meet Canadian Prime Minister Pierre Trudeau, left, on Parliament Hill in Ottawa. Image courtesy of The Canadian Press. The Apollo 11 astronauts meet with Québec premier ministre Jean Lesage in Montréal. Image courtesy of Archives de la Ville de Montreal. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrinhad returned from their Giantstep Presidential goodwill tour on Nov. 5, 1969. Due to scheduling conflicts, a visit to Canada could not be included in the same time frame as the rest of the tour, so the astronauts made a special trip to Ottawa and Montreal on Dec. 2 and 3, meeting with local officials.
      Apollo 11 astronaut Neil A. Armstrong, left, and comedian Bob Hope perform for the troops in Korat, Thailand. Armstrong, in blue flight suit, shakes hands with servicemen in Long Binh, South Vietnam. Armstrong, left, and Hope entertain the crowd in Cu Chi, South Vietnam. Armstrong joined famed comedian Bob Hope’s USO Christmas tour in December 1969. He participated in several shows at venues in South Vietnam, Thailand, and Guam, kidding around with Hope and answering questions from the assembled service members. He received standing ovations and spent much time shaking hands with the troops. The USO troupe also visited the hospital ship U.S.S. Sanctuary (AH-17) stationed in the South China Sea.

      Apollo 12
      For the first time in nearly four weeks, on Dec. 10, Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean stepped out into sunshine and breathed unfiltered air. Since their launch on Nov. 14, 1969, the trio had traveled inside their spacecraft for 10 days on their mission to the Moon and back, wore respirators during their recovery in the Pacific Ocean, stayed in the Mobile Quarantine Facility during the trip from the prime recovery ship U.S.S. Hornet back to Houston, and lived in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Like the Apollo 11 crew before them, Conrad, Gordon, and Bean exhibited no symptoms of any infections with lunar microorganisms and managers declared them fit to be released from quarantine. MSC Director Robert L. Gilruth, other managers, and a crowd of well-wishers greeted Conrad, Gordon, and Bean.
      Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Charles “Pete” Conrad as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Richard F. Gordon as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Alan L. Bean as he emerges from his postflight quarantine. Addressing the crowd gathered outside the LRL, Conrad commented that “the LRL was really quite pleasant,” but all three were glad to be breathing non man-made air! While the men went home to their families for a short rest, work inside the LRL continued. Scientists began examining the first of the 75 pounds of rocks returned by the astronauts as well as the camera and other hardware they removed from Surveyor 3 for effects of 31 months exposed to the harsh lunar environment. Preliminary analysis of the TV camera that failed early during their first spacewalk on the lunar surface indicated that the failure was due to partial burnout of the Videocon tube, likely caused by the crew accidentally pointing the camera toward the Sun. Other scientists busied themselves with analyzing the data returning from the Apollo Lunar Surface Experiment Package (ALSEP) instruments Conrad and Bean deployed on the lunar surface. Mission planners examining the photographs taken from lunar orbit of the Fra Mauro area were confident that the next mission, Apollo 13, would be able to make a safe landing in that geologically interesting site, the first attempt to land in the lunar highlands.
      After taking their first steps in the sunshine, Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon address a large group of well-wishers outside the Lunar Receiving Laboratory. Bean, left, Gordon, and Conrad during their postflight press conference. Two days after leaving the LRL, Conrad, Gordon, and Bean held their postflight press conference in the MSC auditorium. Addressing the assembled reporters, the astronauts first introduced their wives as their “number one support team,” then provided a film and photo summary of their mission, and answered numerous questions. Among other things, the astronauts praised the spacesuits they wore during the Moon walks, indicating they worked very well and, looking ahead, saw no impediments to longer excursions on future missions. Their only concern centered around the ever-present lunar dust that clung to their suits, raising that as a potential issue for future lunar explorers.
      Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus, right, presents Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean with photos of their launch. White House of the Apollo 12 astronauts and their wives with President Richard M. Nixon, First Lady Pat Nixon, and their daughter Tricia Nixon. Conrad, Gordon, and Bean returned to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 17, where their mission began more than a month earlier and nearly ended prematurely when lightning twice struck their Saturn V rocket. KSC Director Kurt H. Debus presented each astronaut with a framed photograph of their launch in front of 8,000 workers assembled in the Vehicle Assembly Building (VAB). Of their nearly ill-fated liftoff Conrad expressed his signature confidence, “Had we to do it again, I would launch exactly under the same conditions.” Guenter Wendt and his pad closeout team had collected a piece of grounding rod from the umbilical tower, cut it into three short pieces, mounted them with the inscription “In fond memory of the electrifying launch of Apollo 12,” and presented them to the astronauts. Three days later, President Richard M. Nixon and First Lady Pat Nixon welcomed Conrad, Gordon, and Bean and their wives Jane, Barbara, and Sue, respectively, to a dinner at the White House. After dinner, they watched a film about the Apollo 12 mission as well as the recently released motion picture Marooned about three astronauts stranded in space. President Nixon requested that the astronauts pay a visit to former President Lyndon B. Johnson, who for many years championed America’s space program, and brief him on their mission, which they did in January 1970.
      The Alan Bean Day parade in Fort Worth. Apollo 12 astronaut Bean and his family deluged by shredded office paper during the parade in his honor in Fort Worth. Image credits: courtesy Fort Worth Star Telegram. On Dec. 22, the city of Fort Worth, Texas, honored native son Bean, with Conrad, Gordon, and their families joining him for the Alan Bean Day festivities. An estimated 150,000 people lined the streets of the city to welcome Bean and his crewmates, dumping a blizzard of ticker tape and shredded office paper on the astronauts and their families during the parade. City workers cleared an estimated 60 tons of paper from the streets after the event. 

      Apollo 13
      The planned Apollo 13 landing site in the Fra Mauro region, in relation to the Apollo 11 and 12 landing sites. Workers place the Spacecraft Lunar Module Adapter over the Apollo 13 Lunar Module. On Dec. 10, 1969, NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, located about 110 miles east of the Apollo 12 touchdown point. Geologists favored the Fra Mauro area for exploration because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. Unlike the Apollo 11 and 12 sites located in the flat lunar maria, Fra Mauro rests in the relatively more rugged lunar highlands. The precision landing by the Apollo 12 crew and their extensive orbital photography of the Fra Mauro region gave NASA confidence to attempt a landing at Fra Mauro. Workers in KSC’s VAB had stacked the three stages of Apollo 13’s Saturn V in June and July 1969. On Dec. 10, they topped the rocket with the Apollo 13 spacecraft, comprising the Command and Service Modules (CSM) and the Lunar Module (LM) inside the Spacecraft LM Adapter. Five days later, the Saturn V exited the VAB and made the 3.5-mile journey out to Launch Pad 39A to begin a series of tests to prepare it for the launch of the planned 10-day lunar mission. During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the ALSEP, a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the CSM, conducting geologic observations from lunar orbit including photographing potential future landing sites.
      Apollo 13 astronaut James A. Lovell trains on the deployment of the S-band antenna. Apollo 13 astronaut Fred W. Haise examines one of the lunar surface instruments. During the first of the two spacewalks, Apollo 13 Moon walkers Lovell and Haise planned to deploy the five ALSEP experiments, comprising:
      Charged Particle Lunar Environment Experiment (CPLEE) – flying for the first time, this experiment sought to measure the particle energies of protons and electrons reaching the lunar surface from the Sun. Lunar Atmosphere Detector (LAD) – this experiment used a Cold Cathode Ion Gauge (CCIG) to measure the pressure of the tenuous lunar atmosphere. Lunar Heat Flow Experiment (LHE) – designed to measure the steady-state heat flow from the Moon’s interior. Passive Seismic Experiment (PSE) – similar to the device left on the Moon during Apollo 12, consisted of a sensitive seismometer to record Moon quakes and other seismic activity. Lunar Dust Detector (LDD) – measured the amount of dust deposited on the lunar surface. A Central Station provided command and communications to the ALSEP experiments, while a Radioisotope Thermoelectric Generator using heat from the radioactive decay of a Plutonium-238 sample provided uninterrupted power. Additionally, the astronauts planned to deploy and retrieve the Solar Wind Collector experiment to collect particles of the solar wind, as did the Apollo 11 and 12 crews before them. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts Lovell, Haise, Young, and Duke participated in a geology training field trip between Dec. 17 and 20 on the Big Island of Hawaii. Geologist Patrick D. Crosland of the National Park Service in Hawaii provided the astronauts with a tour of recent volcanic eruption sites in the Kilauea area, with the thought that the Fra Mauro formation might be of volcanic origin. During several traverses in the Kilauea Volcano area, NASA geologists John W. Dietrich, Uel S. Clanton, and Gary E. Lofgren and US Geological Survey geologists Gordon A. “Gordie” Swann, M.H. “Tim” Hait, and Leon T. “Lee” Silver accompanied the astronauts. The training sessions honed the astronauts’ geology skills and refined procedures for collecting rock samples and for documentary photography.

      Apollo 14
      The Apollo 14 Command and Service Modules shortly after arriving in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. The Apollo 14 Lunar Module ascent stage shortly after arriving in the MSOB. S69-62154 001 Preparations for the fourth Moon landing mission, Apollo 14, continued as well. At the time tentatively planned for launch in July 1970, mission planners considered the Littrow area on the eastern edge of the Mare Serenitatis, characterized by dark material possibly of volcanic origin, as a potential landing site. Apollo 14 astronauts Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had already begun training for their mission. At KSC’s Manned Spacecraft Operations Building (MSOB), the Apollo 14 CSM arrived from its manufacturer North American Rockwell in Downey, California, as did the two stages of the LM from the Grumman Aerospace and Engineering Company in Bethpage, New York, in November 1969. Engineers began tests of the spacecraft shortly after their arrival. The three stages of the Apollo 14 Saturn V were scheduled to arrive at KSC in January 1970.

      To be continued …

      News from around the world in December 1969:
      December 2 – Boeing’s new 747 Jumbo Jet makes its first passenger flight, from Seattle to New York.
      December 3 – George M. Low sworn in as NASA deputy administrator.
      December 4 – A Boy Named Charlie Brown, the first feature film based on the Peanuts comic strip, is released to theaters for the first time.
      December 7 – The animated Christmas special Frosty the Snowman, makes its television debut.
      December 14 – The Jackson 5 make their first appearance on The Ed Sullivan Show.
      December 18 – The sixth James Bond film, On Her Majesty’s Secret Service, held its world premiere in London, with George Lazenby as Agent 007.
      View the full article
    • By NASA
      A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
      As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      “The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
      Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
      This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
      “Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
      The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include: 
      Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji    
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis View the full article
  • Check out these Videos

×
×
  • Create New...