Members Can Post Anonymously On This Site
The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Typically, asteroids — like the one depicted in this artist’s concept — originate from the main asteroid belt between the orbits of Mars and Jupiter, but a small population of near-Earth objects may also come from the Moon’s surface after being ejected into space by an impact.NASA/JPL-Caltech The near-Earth object was likely ejected into space after an impact thousands of years ago. Now it could contribute new insights to asteroid and lunar science.
The small near-Earth object 2024 PT5 captured the world’s attention last year after a NASA-funded telescope discovered it lingering close to, but never orbiting, our planet for several months. The asteroid, which is about 33 feet (10 meters) wide, does not pose a hazard to Earth, but its orbit around the Sun closely matches that of our planet, hinting that it may have originated nearby.
As described in a study published Jan. 14 in the Astrophysical Journal Letters, researchers have collected further evidence of 2024 PT5 being of local origin: It appears to be composed of rock broken off from the Moon’s surface and ejected into space after a large impact.
“We had a general idea that this asteroid may have come from the Moon, but the smoking gun was when we found out that it was rich in silicate minerals — not the kind that are seen on asteroids but those that have been found in lunar rock samples,” said Teddy Kareta, an astronomer at Lowell Observatory in Arizona, who led the research. “It looks like it hasn’t been in space for very long, maybe just a few thousand years or so, as there’s a lack of space weathering that would have caused its spectrum to redden.”
The asteroid was first detected on Aug. 7, 2024, by the NASA-funded Sutherland, South Africa, telescope of the University of Hawai’i’s Asteroid Terrestrial-impact Last Alert System (ATLAS). Kareta’s team then used observations from the Lowell Discovery Telescope and the NASA Infrared Telescope Facility (IRTF) at the Mauna Kea Observatory in Hawai’i to show that the spectrum of reflected sunlight from the small object’s surface didn’t match that of any known asteroid type; instead, the reflected light more closely matched rock from the Moon.
Not (Old) Rocket Science
A second clue came from observing how the object moves. Along with asteroids, Space Age debris, such as old rockets from historic launches, can also be found in Earth-like orbits.
The difference in their orbits has to do with how each type responds to solar radiation pressure, which comes from the momentum of photons — quantum particles of light from the Sun — exerting a tiny force when they hit a solid object in space. This momentum exchange from many photons over time can push an object around ever so slightly, speeding it up or slowing it down. While a human-made object, like a hollow rocket booster, will move like an empty tin can in the wind, a natural object, such as an asteroid, will be much less affected.
Researchers studying asteroid 2024 PT5 have plotted its looping motion on two graphs. To a trained eye, they show that the object never gets captured by Earth’s gravity but, instead, lingers nearby before continuing its orbit around the Sun. NASA/JPL-Caltech To rule out 2024 PT5 being space junk, scientists at NASA’s Center for Near Earth Object Studies (CNEOS), which is managed by the agency’s Jet Propulsion Laboratory in Southern California, analyzed its motion. Their precise calculations of the object’s motion under the force of gravity ultimately enabled them to search for additional motion caused by solar radiation pressure. In this case, the effects were found to be too small for the object to be artificial, proving 2024 PT5 is most likely of natural origin.
“Space debris and space rocks move slightly differently in space,” said Oscar Fuentes-Muñoz, a study coauthor and NASA postdoctoral fellow at JPL working with the CNEOS team. “Human-made debris is usually relatively light and gets pushed around by the pressure of sunlight. That 2024 PT5 doesn’t move this way indicates it is much denser than space debris.”
Asteroid Lunar Studies
The discovery of 2024 PT5 doubles the number of known asteroids thought to originate from the Moon. Asteroid 469219 Kamo’oalewa was found in 2016 with an Earth-like orbit around the Sun, indicating that it may also have been ejected from the lunar surface after a large impact. As telescopes become more sensitive to smaller asteroids, more potential Moon boulders will be discovered, creating an exciting opportunity not only for scientists studying a rare population of asteroids, but also for scientists studying the Moon.
If a lunar asteroid can be directly linked to a specific impact crater on the Moon, studying it could lend insights into cratering processes on the pockmarked lunar surface. Also, material from deep below the lunar surface — in the form of asteroids passing close to Earth — may be accessible to future scientists to study.
“This is a story about the Moon as told by asteroid scientists,” said Kareta. “It’s a rare situation where we’ve gone out to study an asteroid but then strayed into new territory in terms of the questions we can ask of 2024 PT5.”
The ATLAS, IRTF, and CNEOS projects are funded by NASA’s planetary defense program, which is managed by the Planetary Defense Coordination Office at NASA Headquarters in Washington.
For more information about asteroids and comets, visit:
https://www.jpl.nasa.gov/topics/asteroids/
NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise NASA Researchers Discover More Dark Comets Lesson Plan: How to Explore an Asteroid News Media Contacts
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kevin Schindler
Lowell Observatory Public Information Officer
928-607-1387
kevin@lowell.edu
2025-007
Share
Details
Last Updated Jan 22, 2025 Related Terms
Asteroids Earth's Moon Jet Propulsion Laboratory Planetary Defense Planetary Defense Coordination Office Planetary Science Explore More
5 min read How New NASA, India Earth Satellite NISAR Will See Earth
Article 24 hours ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
Article 1 day ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 Min Read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
A sample holder in a vacuum chamber spins during a lunar dust adhesion test at NASA’s Johnson Space Center. Credits: NASA/Josh Litofsky NASA’s Artemis campaign aims to return humans to the Moon, develop a sustainable presence there, and lay the groundwork for the first crewed missions to Mars. As the agency prepares for longer stays on and around the Moon, engineers are working diligently to understand the complex behavior of lunar dust, the sharp, jagged particles that can cling to spacesuits and jam equipment.
Lunar dust has posed a problem since astronauts first encountered it during the Apollo missions. Ahead of more frequent and intense contact with dust, NASA is developing new strategies to protect equipment as astronauts travel between the Moon and spacecraft like Gateway, humanity’s first lunar space station.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, scoops material designed to behave like lunar dust to test how it adheres to Gateway materials. NASA/Bill Stafford Unlike Apollo-era spacecraft that faced lunar dust exposure just once, Gateway will encounter it each time a Human Landing System spacecraft returns to the space station from the lunar South Pole region. Dust could enter Gateway’s environment, risking damage to science instruments, solar arrays, robotic systems, and other important hardware.
Josh Litofsky is the principal investigator and project manager leading a Gateway lunar dust adhesion testing campaign at NASA’s Johnson Space Center in Houston. His team tracks how the dust interacts with materials used to build Gateway.
An artist’s rendering of the Gateway lunar space station in polar orbit around the Moon. NASA/Alberto Bertolin “The particles are jagged from millions of years of micrometeoroid impacts, sticky due to chemical and electrical forces, and extremely small,” Litofsky said. “Even small amounts of lunar dust can have a big impact on equipment and systems.”
Litofksy’s work seeks to validate the Gateway On-orbit Lunar Dust Modeling and Analysis Program (GOLDMAP), developed by Ronald Lee, also of Johnson Space Center. By considering factors such as the design and configuration of the space station, the materials used, and the unique conditions in lunar orbit, GOLDMAP helps predict how dust may move and settle on Gateway’s external surfaces.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, places a sample holder inside a vacuum chamber to test how lunar dust sticks to Gateway materials. NASA/Bill StaffordNASA/Bill Stafford Early GOLDMAP simulations have shown that lunar dust can form clouds around Gateway, with larger particles sticking to surfaces.
The data from these tests and simulations will help NASA safeguard Gateway, to ensure the space station’s longevity during the next era of lunar exploration.
The lessons learned managing lunar dust and other harsh conditions through Gateway and Artemis will prepare NASA and its international partners for missions deeper into the cosmos
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Jan 22, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Gateway Space Station Artemis Exploration Systems Development Mission Directorate Gateway Program Johnson Space Center Explore More
4 min read NASA Technology Helps Guard Against Lunar Dust
Article 10 months ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
Article 1 month ago 3 min read Measuring Moon Dust to Fight Air Pollution
Article 4 months ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Gateway
International teams of astronauts will explore the scientific mysteries of deep space with Gateway, humanity’s first space station around the…
Human Landing System
View the full article
-
By NASA
Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
“This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.”
Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.
“NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars.
There are 10 NASA payloads flying on this flight:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Amber Jacobson / Karen Fox
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
-
By NASA
NASA/Joel Kowsky An adult Alamosaurus sports eclipse glasses outside of The Children’s Museum of Indianapolis, on April 6, 2024. Two days later, the total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. A partial solar eclipse was visible across the entire North American continent along with parts of Central America and Europe.
The NASA Headquarters photo team chose this image as one of the best from 2024. See more of the top 100 from last year on Flickr.
Image credit: NASA/Joel Kowsky
View the full article
-
By NASA
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.
The ten NASA payloads aboard Firefly’s Blue Ghost lander include:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center
Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
Learn more about CLPS and Artemis at: http://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.