Jump to content

NASA Remembers Sept. 11


NASA

Recommended Posts

  • Publishers

The attacks of Sept. 11, 2001 were a national tragedy that resulted in a staggering loss of life and a significant change in American culture. Each year, we pause and remember. Beyond honoring the Americans who died that day, NASA also assisted FEMA in New York in the days afterward, and remembered the victims by providing flags flown aboard the Space Shuttle to their families.

New York City image from the International Space Station
NASA astronaut Jessica Meir photographed the New York City area from the International Space Station in March 2020. Credits: NASA
Washington DC photographed from low Earth orbit
European Space Agency astronaut Thomas Pesquet photographed the city Washington D.C. and the surrounding area on April 11, 2017, from his vantage point aboard the International Space Station. Credits: ESA/NASA

Astronaut Frank Culbertson – The Only American Off the Planet

“The smoke seemed to have an odd bloom to it at the base of the column that was streaming south of the city. After reading one of the news articles we just received, I believe we were looking at NY around the time of, or shortly after, the collapse of the second tower. How horrible…”-Frank Culbertson
 

Expedition 3 Commander Frank Culbertson was aboard the International Space Station at the time of the attacks, and the only American on the crew. As soon as he learned of the attacks, he began documenting the event in photographs because the station was flying over the New York City area. He captured incredible images in the minutes and hours following the event. From his unique vantage point in space, he recorded his thoughts of the world changing beneath him.

Watch Video: Culbertson Remembers 9/11

The following day, he posted a public letter that captured his initial thoughts of the events as they unfolded. “The world changed today. What I say or do is very minor compared to the significance of what happened to our country today when it was attacked.”
Upon further reflection, Culbertson said, “It’s horrible to see smoke pouring from wounds in your own country from such a fantastic vantage point. The dichotomy of being on a spacecraft dedicated to improving life on the earth and watching life being destroyed by such willful, terrible acts is jolting to the psyche, no matter who you are.”

Read Culbertson’s Full Letter
Video: Station Astronauts Honor 9/11 Victims

New York City area photographed from orbit on Sept. 11, 2001
Visible from space, a smoke plume rises from the Manhattan area after two planes crashed into the towers of the World Trade Center. This photo was taken of metropolitan New York City (and other parts of New York as well as New Jersey) the morning of September 11, 2001. Credits: NASA

NASA Science Programs Monitor the Air
NASA science programs were called into action after Sept. 11, 2001, as the agency worked with FEMA to fly sensors over the affected areas on aircraft looking for aerial contaminants and used satellite resources to monitor from above.

Flags for Heroes and Families

583415main_sts108-339-020_full.jpg?w=204
View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson

NASA flew nearly 6,000 4 by 6 inch flags on Endeavour’s flight during STS-108 to honor the victims of the terrorist attacks in New York, Washington, D.C. and Pennsylvania. Students working at Johnson Space Center in Houston, Texas assembled the commemorative packages, including the U.S. flags flown in space, to be presented to relatives of the victims. Distribution began on June 14, 2002, National Flag Day, at a ceremony held at the American Museum of Natural History’s Rose Center for Earth and Space in New York.
“The ‘Flags for Heroes and Families’ campaign is a way for us to honor and show our support for the thousands of brave men and women who have selflessly contributed to the relief and recovery efforts,” said then-NASA Administrator Dan Goldin. “The American flags are a patriotic symbol of our strength and solidarity, and our Nation’s resolve to prevail.”
“NASA wanted to come up with an appropriate tribute to the people who lost their lives in the tragic events of September 11,” added Goldin. “America’s space program has a long history of carrying items into space to commemorate historic events, acts of courage and dramatic achievements. ‘Flags for Heroes and Families’ is a natural extension of this ongoing outreach project.”
Read More About ‘Flags for Heroes and Families’→

Commemoration Goes to Mars

586237main_pia14750-full_full.jpg?w=2048
View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson

In September 2001, Honeybee Robotics employees in lower Manhattan were building a pair of tools for grinding weathered rinds off rocks on Mars, so that scientific instruments on NASA’s Mars Exploration Rovers Spirit and Opportunity could inspect the rocks’ interiors.
That month’s attack on the twin towers of the World Trade Center, less than a mile away, shook the lives of the employees and millions of others.
Work on the rock abrasion tools needed to meet a tight schedule to allow thorough testing before launch dates governed by the motions of the planets. The people building the tools could not spend much time helping at shelters or in other ways to cope with the life-changing tragedy of Sept. 11. However, they did find a special way to pay tribute to the thousands of victims who perished in the attack.
An aluminum cuff serving as a cable shield on each of the rock abrasion tools on Mars was made from aluminum recovered from the destroyed World Trade Center towers. The metal bears the image of an American flag and fills a renewed purpose as part of solar system exploration.
One day, both rovers will be silent. In the cold, dry environments where they have worked on Mars, the onboard memorials to victims of the Sept. 11 attack could remain in good condition for millions of years.
Read More About the Rovers’ 9/11 Tribute

NASA Kennedy Adds Florida Touch to Sept. 11 Flag
The contributions of NASA and Kennedy Space Center were stitched into the fabric of one of the nation’s most recognizable symbols, when flags from Florida’s Spaceport were sewn into an American Flag recovered near ground zero following the Sept. 11, 2001, attacks.
 

The National 9/11 Flag was raised over the Rocket Garden at the Kennedy Space Center Visitor Complex
The National 9/11 Flag was raised over the Rocket Garden at the Kennedy Space Center Visitor Complex after Florida’s contribution was added. Credits: NASA/Kim Shiflett

“A few days after the collapse of the World Trade Center this flag was hanging on a scaffolding at 90 West Street, which was a building directly south of the World Trade Center that was heavily damaged when the south tower collapsed,” said Jeff Parness, director, founder and chairman of the “New York Says Thank You Foundation.”
The flag went on to become one of the most enduring symbols of the recovery from the attack. “The National 9/11 Flag” is a permanent part of the collection of the National September 11 Memorial Museum at the World Trade Center site. There, America’s flag can evoke a sense of pride, unity and hunger to keep achieving greatness, just as the nation’s space program has for more than half a century.
Read More
Video: Kennedy Adds Florida Touch to 9/11 Flag
 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Students participating in NASA’s Minority University Research AND Education Project (MUREP) Innovation and Tech Transfer Idea Competition on-site experience. Credit: Josh Valcarcel NASA is awarding $7.2 million to six minority-serving institutions to grow initiatives in engineering-related disciplines and fields for learners who have historically been underrepresented and underserved in science, technology, engineering, and math (STEM) fields.
      “NASA is excited to award funding to six minority-serving institutions, paving the way for greater diversity in engineering and STEM,” said Shahra Lambert, NASA senior advisor for engagement and equity, NASA’s Headquarters in Washington. “NASA is committed to fostering diversity and providing essential academic resources to empower the next generation of innovators.” 
      NASA’s Minority University Research and Education Project (MUREP), in partnership with the National Science Foundation’s Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) network, provides support to increase diversity in engineering. It offers academic resources to college students, aiming to have a long-term impact on the engineering field.
      “With these awards, we are continuing to create pathways that increase access and opportunities in STEM for underrepresented and underserved groups,” said Keya Briscoe, MUREP manager. “NASA continues to invest in initiatives that are critical in driving innovation, fostering inclusion, and providing access to the STEM ecosystem for everyone.”
      The awardees and their project titles are as follows:
      Alabama A&M University Pathways to NASA: Empowering Underrepresented STEM Talent through Strategic Partnerships and Innovative Learning
      Morgan State University – Baltimore Developing NASA Pathways to Broadening Participation in Space Exploration Technology
      North Carolina Agricultural and Technical State University Strengthening Opportunities in Aerospace Research and Education
      University of Central Florida Hy-POWERED: Hydrogen-POWered Engineering Research and Education for Diversity
      University of Colorado, Denver Seed, Support, and Cultivate: Innovative Strategies for Underrepresented Minorities in STEM Education
      University of Houston Partnership for Inclusivity in Engineering Education and Research for Space
      NASA administers the grants through its Office of STEM Engagement. These investments enhance the research, academic and technology capabilities of minority-serving institutions through multiyear cooperative agreements, while advancing NASA’s vision for a diverse and inclusive workforce.
      To learn more about NASA STEM Engagement Funding Opportunities, visit:
      https://go.nasa.gov/3AZedZ8
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-269-1600
      Abbey.a.donaldson@nasa.gov
      View the full article
    • By NASA
      X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers using NASA’s Chandra X-ray Observatory have found a galaxy cluster has two streams of superheated gas crossing one another. This result shows that crossing the streams may lead to the creation of new structure.
      Researchers have discovered an enormous, comet-like tail of hot gas — spanning over 1.6 million light-years long — trailing behind a galaxy within the galaxy cluster called Zwicky 8338 (Z8338 for short). This tail, spawned as the galaxy had some of its gas stripped off by the hot gas it is hurtling through, has split into two streams.
      This is the second pair of tails trailing behind a galaxy in this system. Previously, astronomers discovered a shorter pair of tails from a different galaxy near this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays.
      Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers now have evidence that these streams trailing behind the speeding galaxies have crossed one another. Z8338 is a chaotic landscape of galaxies, superheated gas, and shock waves (akin to sonic booms created by supersonic jets) in one relatively small region of space. These galaxies are in motion because they were part of two galaxy clusters that collided with each other to create Z8338.
      This new composite image shows this spectacle. X-rays from Chandra (represented in purple) outline the multimillion-degree gas that outweighs all of the galaxies in the cluster. The Chandra data also shows where this gas has been jettisoned behind the moving galaxies. Meanwhile an optical image from the Dark Energy Survey from the Cerro Tololo Inter-American Observatory in Chile shows the individual galaxies peppered throughout the same field of view.
      The original gas tail discovered in Z8338 is about 800,000 light-years long and is seen as vertical in this image (see the labeled version). The researchers think the gas in this tail is being stripped away from a large galaxy as it travels through the galaxy cluster. The head of the tail is a cloud of relatively cool gas about 100,000 light-years away from the galaxy it was stripped from. This tail is also separated into two parts.
      The team proposes that the detachment of the tail from the large galaxy may have been caused by the passage of the other, longer tail. Under this scenario, the tail detached from the galaxy because of the crossing of the streams.
      The results give useful information about the detachment and destruction of clouds of cooler gas like those seen in the head of the detached tail. This work shows that the cloud can survive for at least 30 million years after it is detached. During that time, a new generation of stars and planets may form within it.
      The Z8338 galaxy cluster and its jumble of galactic streams are located about 670 million light-years from Earth. A paper describing these results appeared in the Aug. 8, 2023, issue of the Monthly Notices of the Royal Astronomical Society and is available online at: https://academic.oup.com/mnras/article/525/1/1365/7239302.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features a composite image of two pairs of hot gas tails found inside a single galaxy cluster. The image is presented both labeled and unlabeled, with color-coded ovals encircling the hot gas tails.
      In both the labeled and unlabeled versions of the image, mottled purple gas speckles a region of space dotted with distant flecks of red and white. Also present in this region of space are several glowing golden dots. These dots are individual galaxies that together form the cluster Zwicky 8338.
      To our right of center is a glowing golden galaxy with a mottled V shaped cloud of purple above it. Yellow labels identify the two arms of the V as tails trailing behind the hurtling galaxy below.
      To our left of center is another golden galaxy, this one surrounded by purple gas. Behind it, opening toward our right in the shape of a widening V lying on its side, are two more mottled purple clouds. Labeled in white, these newly-discovered gas tails are even larger than the previously discovered tails labeled in yellow. These tails, which overlap with the galaxy on our right, are over 1.6 million light-years long.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Hidden Figures Way | NASA’s Vision of Equality
    • By NASA
      3 min read
      NASA Develops Process to Create Very Accurate Eclipse Maps
      New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
      For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
      Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
      The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
      “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow  — the umbra,” said Wright.
      A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
      The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
      A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
      A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
      Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
      This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
      For more about eclipses, refer to:
      https://science.nasa.gov/eclipses
      By Ernie Wright and Susannah Darling
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Nancy Neal-Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-0039
      nancy.n.jones@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      3 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      4 weeks ago
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…


      Article


      4 weeks ago
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station.
      The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.
      Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.
      Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster  for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
      The Crew
      Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft.
      Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment.
      Follow @astrohague on X and Instagram.
      Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station.
      Mission Overview
      After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station.
      Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary.
      After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida.
      Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission.
      While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91.
      In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore.
      Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at https://www.nasa.gov/station.
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Commercial Crew International Space Station (ISS) Explore More
      4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 day ago 3 min read Station Science Top News: September 13, 2024
      Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...