Jump to content

Episode 2 – Below the surface


Recommended Posts

Episode_2_Below_the_surface_card_full.pn Video: 00:04:29

Watch the second episode of the ExoMars Rosalind Franklin rover mission – Europe’s ambitious exploration journey to search for past and present signs of life on Mars.

This episode starts with Rosalind searching for traces of life below the martian surface using a ground penetrating radar and a set of cameras.

The rover will dig, collect, and investigate the chemical composition of material collected by a drill. Rosalind Franklin will be the first rover to reach a depth of up to two metres deep below the surface, acquiring samples that have been protected from surface radiation and extreme temperatures.

Rosalind Franklin uses the WISDOM radar to help scientists on Earth decide where to drill. Besides identifying the most promising targets for sampling, WISDOM will help the rover avoid potential hazards, such as the presence of buried rocks that could damage the drill.

The scientific eyes of the rover are set on the Panoramic Camera suite known as PanCam. The Close-UP Imager (CLUPI) sits on the side of the drill box, a camera designed to acquire high-resolution, colour, close-up images of outcrops, rocks and soils. PanCam and CLUPI will help scientists find the most promising spots to drill. These instruments can also investigate very fine outcrop details and image drill samples before they are sent into the rover’s laboratory.

After the rover retracts its drill, the sample is in a special chamber at the tip.  Under the reduced martian gravity (38% of Earth’s), the material drops onto a special “hand” that the rover can extend to the front to collect drill samples.

The mission will serve to demonstrate key technologies that Europe needs to master for future planetary exploration missions.

The ExoMars rover series show the rover and martian landscapes as true to reality as possible for a simulation.

Check ESA’s ExoMars website and our frequently asked questions for the latest updates.

 

Credits: ESA

Production: Mlabspace for ESA

3D animation: ESA/Mlabspace

Music composed by Valentin Joudrier

Watch all the videos from the ExoMars Rosalind Frankin mission series.

Access the related broadcst quality video material.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A prototype of a robot built to access underwater areas where Antarctic ice shelves meet land is lowered through the ice during a field test north of Alaska in March. JPL is developing the concept, called IceNode, to take melt-rate measurements that would improve the accuracy of sea level rise projections.U.S. Navy/Scott Barnes Conducted through the U.S. Navy Arctic Submarine Laboratory’s biennial Ice Camp, this field test marked IceNode’s first in a polar environment. The team hopes to one day deploy a fleet of the autonomous robots beneath Antarctic ice shelves.U.S. Navy/Scott Barnes Called IceNode, the project envisions a fleet of autonomous robots that would help determine the melt rate of ice shelves.
      On a remote patch of the windy, frozen Beaufort Sea north of Alaska, engineers from NASA’s Jet Propulsion Laboratory in Southern California huddled together, peering down a narrow hole in a thick layer of sea ice. Below them, a cylindrical robot gathered test science data in the frigid ocean, connected by a tether to the tripod that had lowered it through the borehole.
      This test gave engineers a chance to operate their prototype robot in the Arctic. It was also a step toward the ultimate vision for their project, called IceNode: a fleet of autonomous robots that would venture beneath Antarctic ice shelves to help scientists calculate how rapidly the frozen continent is losing ice — and how fast that melting could cause global sea levels to rise.
      Warming Waters, Treacherous Terrain
      If melted completely, Antarctica’s ice sheet would raise global sea levels by an estimated 200 feet (60 meters). Its fate represents one of the greatest uncertainties in projections of sea level rise. Just as warming air temperatures cause melting at the surface, ice also melts when in contact with warm ocean water circulating below. To improve computer models predicting sea level rise, scientists need more accurate melt rates, particularly beneath ice shelves — miles-long slabs of floating ice that extend from land. Although they don’t add to sea level rise directly, ice shelves crucially slow the flow of ice sheets toward the ocean.
      A remote camera captured an IceNode prototype deployed below the frozen surface of Lake Superior, off Michigan’s Upper Peninsula, during a field test in 2022. The three thin legs of the robot’s “landing gear” affix the prototype to the icy ceiling.NASA/JPL-Caltech The challenge: The places where scientists want to measure melting are among Earth’s most inaccessible. Specifically, scientists want to target the underwater area known as the “grounding zone,” where floating ice shelves, ocean, and land meet — and to peer deep inside unmapped cavities where ice may be melting the fastest. The treacherous, ever-shifting landscape above is dangerous for humans, and satellites can’t see into these cavities, which are sometimes beneath a mile of ice. IceNode is designed to solve this problem.
      “We’ve been pondering how to surmount these technological and logistical challenges for years, and we think we’ve found a way,” said Ian Fenty, a JPL climate scientist and IceNode’s science lead. “The goal is getting data directly at the ice-ocean melting interface, beneath the ice shelf.”
      Floating Fleet
      Harnessing their expertise in designing robots for space exploration, IceNode’s engineers are developing vehicles about 8 feet (2.4 meters) long and 10 inches (25 centimeters) in diameter, with three-legged “landing gear” that springs out from one end to attach the robot to the underside of the ice. The robots don’t feature any form of propulsion; instead, they would position themselves autonomously with the help of novel software that uses information from models of ocean currents.
      JPL’s IceNode project is designed for one of Earth’s most inaccessible locations: underwater cavities deep beneath Antarctic ice shelves. The goal is getting melt-rate data directly at the ice-ocean interface in areas where ice may be melting the fastest. Credit: NASA/JPL-Caltech Released from a borehole or a vessel in the open ocean, the robots would ride those currents on a long journey beneath an ice shelf. Upon reaching their targets, the robots would each drop their ballast and rise to affix themselves to the bottom of the ice. Their sensors would measure how fast warm, salty ocean water is circulating up to melt the ice, and how quickly colder, fresher meltwater is sinking.
      The IceNode fleet would operate for up to a year, continuously capturing data, including seasonal fluctuations. Then the robots would detach themselves from the ice, drift back to the open ocean, and transmit their data via satellite.
      “These robots are a platform to bring science instruments to the hardest-to-reach locations on Earth,” said Paul Glick, a JPL robotics engineer and IceNode’s principal investigator. “It’s meant to be a safe, comparatively low-cost solution to a difficult problem.”
      Arctic Field Test
      While there is additional development and testing ahead for IceNode, the work so far has been promising. After previous deployments in California’s Monterey Bay and below the frozen winter surface of Lake Superior, the Beaufort Sea trip in March 2024 offered the first polar test. Air temperatures of minus 50 degrees Fahrenheit (minus 45 Celsius) challenged humans and robotic hardware alike.
      The test was conducted through the U.S. Navy Arctic Submarine Laboratory’s biennial Ice Camp, a three-week operation that provides researchers a temporary base camp from which to conduct field work in the Arctic environment.
      As the prototype descended about 330 feet (100 meters) into the ocean, its instruments gathered salinity, temperature, and flow data. The team also conducted tests to determine adjustments needed to take the robot off-tether in future.
      “We’re happy with the progress. The hope is to continue developing prototypes, get them back up to the Arctic for future tests below the sea ice, and eventually see the full fleet deployed underneath Antarctic ice shelves,” Glick said. “This is valuable data that scientists need. Anything that gets us closer to accomplishing that goal is exciting.”
      IceNode has been funded through JPL’s internal research and technology development program and its Earth Science and Technology Directorate. JPL is managed for NASA by Caltech in Pasadena, California.
      How NASA’s OMG found ocean waters are melting Greenland News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-115
      Share
      Details
      Last Updated Aug 29, 2024 Related Terms
      Climate Change Climate Science Cryosphere Earth Jet Propulsion Laboratory Robotics Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 23 hours ago 6 min read Work Is Under Way on NASA’s Next-Generation Asteroid Hunter
      Article 1 day ago 4 min read New NASA Study Tallies Carbon Emissions From Massive Canadian Fires
      Article 1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s LRO (Lunar Reconnaissance Orbiter) has twice transmitted a laser pulse to a cookie-sized retroreflector aboard JAXA’s (Japan Aerospace Exploration Agency) SLIM lander on the Moon and received a return signal.
      As LRO passed 44 miles above SLIM (Smart Lander for Investigating Moon) during two successive orbits on May 24, 2024, it pinged the lander with its laser altimeter instrument as it had done eight times before. But, on these two attempts, the signal bounced back to LRO’s detector.
      This was an important accomplishment for NASA because the device is not in an optimal position. Retroreflectors are typically secured to the top of landers, giving LRO a 120-degree range of angles to aim toward when sending laser pulses to the approximate location of a retroreflector. However, the SLIM lander had settled on the surface with its top facing sideways, limiting LRO’s range.
      To boost the chances of reaching their target, the LRO team worked with JAXA to determine the exact location and orientation of SLIM. Then, NASA engineers predicted when LRO’s orbit trajectory would bring it to coordinates that would give it the best chance of reaching SLIM’s retroreflector with the laser beams.
      SLIM on the lunar surface captured by the LEV-2 (SORA-Q) rover. “LRO’s altimeter wasn’t built for this type of application, so the chances of pinpointing a tiny retroreflector on the Moon’s surface are already low,” said Xiaoli Sun, who led the team that built SLIM’s retroreflector at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as part of a partnership between NASA and JAXA.
      “For the LRO team to have reached a retroreflector that faces sideways, instead of the sky, shows that these little devices are incredibly resilient,” Sun said.
      SLIM touched down on the Moon’s surface on Jan. 20. The retroreflector that hitched a ride with the lander, called a Laser Retroreflector Array, is one of the six NASA has sent to the Moon aboard private and public landers, and the second to bounce signal back to LRO’s altimeter.
      The first time a laser beam was transmitted from LRO to a NASA retroreflector and back was on Dec. 12, 2023, when LRO pinged ISRO’s (Indian Space Research Organisation) Vikram lander. LRO has since exchanged laser pings with Vikram three more times.
      NASA’s retroreflector has eight quartz corner-cube prisms set into a dome-shaped aluminum frame that is 2 inches wide. With no power or maintenance required, retroreflectors can last on the Moon’s surface for decades and thus provide reliable beacons for future missions.
      NASA’s Laser Retroreflector Array installed on JAXA’s SLIM lander before launch. The retroreflectors could guide Artemis astronauts to the surface in the dark, for example, or mark the locations of spacecraft already on the surface to help astronauts and uncrewed spacecraft land near them.
      LRO’s laser altimeter, the only laser instrument orbiting the Moon for now, was designed to map the Moon’s topography to prepare for missions to the surface — not to point to within 1/100th of a degree of a retroreflector, which is what LRO engineers are trying to do with every ping.
      LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.

      NASA’s LRO Spots Japan’s Moon Lander 


      New Evidence Adds to Findings Hinting at Network of Caves on Moon


      NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels


      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.                  
       
      Media Contact:
      Nancy Neal Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 29, 2024 Related Terms
      Artemis Earth’s Moon Goddard Space Flight Center Lunar Discovery & Exploration Program Lunar Reconnaissance Orbiter (LRO) Planetary Science Division Science Mission Directorate The Solar System View the full article
    • By NASA
      2 Min Read Exploring the Moon: Episode Previews
      Extravehicular Activity and Human Surface Mobility Program Discover. Learn. Explore.

      NASA’s video series, Exploring the Moon, takes a “behind-the-scenes” look at humanity’s next steps on the Moon. Here is your first look at some of the key moments from the upcoming series! Scroll down or navigate through CONTENTS, to the side, to explore!
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Who, What, When, Where, Why, and How…

      How many small steps equal a giant leap? Find out what it takes to plan our next great voyage to the Moon, what exactly we plan to do there, and what may come next.
      We went to the Moon fifty years ago, but we only explored a very small part of the Moon.
      Nujoud Merancy
      Exploration Systems Strategy & Architecture Lead

      Going to the Moon Won’t Be Easy…

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 01: Why Explore the Moon? Exploring the Moon Series Next-Generation Spacesuits

      Explore the special technologies and improvements NASA has made to its spacesuits since the International Space Station (ISS), and how they will be used to make Artemis mission possible​.
      Basically you should think of a spacesuit as a human-shaped spacecraft.
      Liana Rodriggs
      Spacesuit Expert

      Advancements in Mobility

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 02: Artemis SpacesuitsExploring the Moon Series Spacesuits. How do they work?

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 02: Artemis SpacesuitsExploring the Moon Series Spacewalks: Microgravity vs Planetary

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 02: Artemis SpacesuitsExploring the Moon Series Lunar Rovers

      Buckle up and roll out! Learn all about the different capabilities crewed and uncrewed rovers have. Plus, find out how these technologies will be used to explore the lunar surface.
      We are taking the ability to transport crew and tools. And these rovers that can operate independent of the crew.
      Nathan Howard
      Lunar Rovers Expert

      Reinventing the Wheel: Apollo to Artemis

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 03: Lunar RoversExploring the Moon Series Simulating the Mission

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 03: Lunar RoversExploring the Moon Series Lunar Geology Tools

      How does NASA collect surface samples from the Moon? The answer may surprise you! Explore the challenges of designing the geology sampling equipment for the Artemis missions and how geology sampling technology has changed since Apollo missions.​
      In order to take these samples on the Moon you need something to pick these samples up with. You can't just walk around and pick them up by hand, that is why we make geology tools.
      Holly Newton
      Lunar Geology Tools Expert

      Lessons Learned from Apollo

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 04: Lunar Geology ToolsExploring the Moon Series Breakthrough! The Ingenuity of Artemis Tools

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 04: Lunar Geology ToolsExploring the Moon Series It’s All In The Finer Details…

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 04: Lunar Geology ToolsExploring the Moon Series Special Lunar Challenges

      Learn how NASA engineers are working to prepare for the unique challenges astronauts will face when exploring the Lunar South Pole for the first time ever.
      There are parts of the Moon and craters that have not seen the Sun in over a billion years.
      Ben Greene
      EVA Development Manager

      The Challenges Ahead

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 05: Special Lunar ChallengesExploring the Moon Series Dust. Gets. Everywhere.

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 05: Special Lunar ChallengesExploring the Moon Series Exploring the South Pole of the Moon

      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Episode 05: Special Lunar ChallengesExploring the Moon Series Back to the "Exploring the Moon" Main Page Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:14:53 In the second episode of this docu series, we take a closer look into what it took to build ESA’s Young Professional Satellite (YPSat). YPSat’s mission objectives are to capture the key moments of Ariane 6’s inaugural flight and take in-orbit pictures of Earth and space. To achieve this, the satellite requires the multiple sub-systems to work in harmony and adhere to a pre-defined mission sequence.
      This episode zooms in four of the sub-systems: the Wake-Up System (WUS), Battery, On-Board Computer (OBC) and Telecommunications.
      Running at ultra low power, the WUS circuit board was designed, tested and manufactured specifically for YPSat. Created to meet Arianespace’s requirement to be operational on the launchpad for 45 days, its function is to wake up the satellite during the launch to record the fairing separation.
      Once the WUS detects the launch, it will signal to the battery to turn on the rest of the satellite. The battery has the challenge to maintain enough charge to power the remainder of the components.
      The On-Board Computer (OBC) then takes the lead to orchestrate the rest of the mission. The OBC acts as the brain of the satellites; it sends commands to all the other sub-systems, including sending the commands to record the videos and pictures.
      Once these are captured, the Telecommunications team takes over to coordinate with the ground stations to send the data back on Earth so it can be decoded into clear images. The challenge is to ensure enough communication between the satellite and Earth so the data is properly retrieved before the YPSat disintegrates upon re-entry.
      One day prior launch, YPSat is now sitting in Ariane 6’s capsule. To get there, the satellite was subject to rigorous tests and certifications to meet the stringent standards of the European Space Agency and Arianespace. Will YPSat accomplish its mission objectives? We'll find out in the next episode.
       
      Credits:
      Directed and produced by Chilled Winston: https://chilledwinston.com/ and Emma de Cocker
      Powered by ESA - European Space Agency
      Music from Epidemic Sound
      View the full article
    • By European Space Agency
      Video: 00:13:39 In this first episode of our docu-series, we embark on the exciting journey of the YPSat (Young Professional Satellite), a satellite flying on-board the inaugural flight of Ariane 6, Europe’s new heavy launcher. Two years ago, a team of Young Professionals at ESA, with diverse backgrounds, nationalities and expertise, have come together around one passion and with one ambition; design, manufacture and send their own satellite to space.
      Starting with some trivial ideas, the team matured their mission objectives and won the approval and support of ESA management to kick start the project. YPSat will be ‘the witness’ of Ariane 6: it will record the fairing separation, document the CubeSats deployment and send back beautiful in-orbit images of Earth and space.
      This scaled-down mission has all the ingredients of a large flagship mission; engineering, verification, testing and production assurance; project management, tight schedule, team coordination and communication; failures, crisis situations and successes.
      YPSat is a blueprint for the future of European space exploration. It has been a life changing opportunity for young professionals at ESA to get hands-on experience and experience the process of developing a space mission. But it has also been an eye-opening occasion for the European Space Agency to get inspired by the young generations, bringing in new ideas and technologies.
      This is just the beginning of the adventure for the YPSat team. The next episode will unravel the creativity, ingenuity and determination that the young professionals brought in to achieve the mission’s objectives. What powers the satellite? Who activates the cameras? How is the data transmitted back on Earth?
      Credits:
      Directed and produced by Chilled Winston: https://chilledwinston.com/ and Emma de Cocker
      Powered by ESA - European Space Agency
      Music from Epidemic Sound
      View the full article
  • Check out these Videos

×
×
  • Create New...