Jump to content

Voyager 1 Team Accomplishes Tricky Thruster Swap


NASA

Recommended Posts

  • Publishers

5 min read

Voyager 1 Team Accomplishes Tricky Thruster Swap

1-main-voyagerspacecraft.jpg?w=800
A model of NASA’s Voyager spacecraft. The twin Voyagers have been flying since 1977 and are exploring the outer regions of our solar system.
NASA/JPL-Caltech

The spacecraft uses its thrusters to stay pointed at Earth, but after 47 years in space some of the fuel tubes have become clogged.

Engineers working on NASA’s Voyager 1 probe have successfully mitigated an issue with the spacecraft’s thrusters, which keep the distant explorer pointed at Earth so that it can receive commands, send engineering data, and provide the unique science data it is gathering.

After 47 years, a fuel tube inside the thrusters has become clogged with silicon dioxide, a byproduct that appears with age from a rubber diaphragm in the spacecraft’s fuel tank. The clogging reduces how efficiently the thrusters can generate force. After weeks of careful planning, the team switched the spacecraft to a different set of thrusters.

The thrusters are fueled by liquid hydrazine, which is turned into gases and released in tens-of-milliseconds-long puffs to gently tilt the spacecraft’s antenna toward Earth. If the clogged thruster were healthy it would need to conduct about 40 of these short pulses per day.

Both Voyager probes feature three sets, or branches, of thrusters: two sets of attitude propulsion thrusters and one set of trajectory correction maneuver thrusters. During the mission’s planetary flybys, both types of thrusters were used for different purposes. But as Voyager 1 travels on an unchanging path out of the solar system, its thruster needs are simpler, and either thruster branch can be used to point the spacecraft at Earth.

In 2002 the mission’s engineering team, based at NASA’s Jet Propulsion Laboratory in Southern California, noticed some fuel tubes in the attitude propulsion thruster branch being used for pointing were clogging, so the team switched to the second branch. When that branch showed signs of clogging in 2018, the team switched to the trajectory correction maneuver thrusters and have been using that branch since then.

Now those trajectory correction thruster tubes are even more clogged than the original branches were when the team swapped them in 2018. The clogged tubes are located inside the thrusters and direct fuel to the catalyst beds, where it is turned into gases. (These are different than the fuel tubes that send hydrazine to the thrusters.) Where the tube opening was originally only 0.01 inches (0.25 millimeters) in diameter, the clogging has reduced it to 0.0015 inches (0.035 mm), or about half the width of a human hair. As a result, the team needed to switch back to one of the attitude propulsion thruster branches.

Warming Up the Thrusters

Switching to different thrusters would have been a relatively simple operation for the mission in 1980 or even 2002. But the spacecraft’s age has introduced new challenges, primarily related to power supply and temperature. The mission has turned off all non-essential onboard systems, including some heaters, on both spacecraft to conserve their gradually shrinking electrical power supply, which is generated by decaying plutonium.

While those steps have worked to reduce power, they have also led to the spacecraft growing colder, an effect compounded by the loss of other non-essential systems that produced heat. Consequently, the attitude propulsion thruster branches have grown cold, and turning them on in that state could damage them, making the thrusters unusable.

The team determined that the best option would be to warm the thrusters before the switch by turning on what had been deemed non-essential heaters. However, as with so many challenges the Voyager team has faced, this presented a puzzle: The spacecraft’s power supply is so low that turning on non-essential heaters would require the mission to turn off something else to provide the heaters adequate electricity, and everything that’s currently operating is considered essential.

Studying the issue, they ruled out turning off one of the still-operating science instruments for a limited time because there’s a risk that the instrument would not come back online. After additional study and planning, the engineering team determined they could safely turn off one of the spacecraft’s main heaters for up to an hour, freeing up enough power to turn on the thruster heaters.

It worked. On Aug. 27, they confirmed that the needed thruster branch was back in action, helping point Voyager 1 toward Earth.

“All the decisions we will have to make going forward are going to require a lot more analysis and caution than they once did,” said Suzanne Dodd, Voyager’s project manager at the Jet Propulsion Laboratory which manages Voyager for NASA.

The spacecraft are exploring interstellar space, the region outside the bubble of particles and magnetic fields created by the Sun, where no other spacecraft are likely to visit for a long time. The mission science team is working to keep the Voyagers going for as long as possible, so they can continue to reveal what the interstellar environment is like.

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

Share

Details

Last Updated
Sep 10, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      A group of 18 personnel from the 4th Space Operations Squadron, a component of Delta 8, headquartered at Peterson Space Force Base, Colorado, recently traveled to Joint Base Pearl Harbor Hickam, Hawaii for a contingency operations exercise to test a highly technical piece of equipment known as a Mobile Constellation Control Station.

      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Perseverance Rover Science Team meets in person and online during the July 2024 team meeting in Pasadena, CA. Credits: R. Hogg and J. Maki. The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis
      It has become a fun tradition for me to write a summary of our yearly in-person Science Team Meetings (2022 meeting and 2023 meeting). I’ve been particularly looking forward to this year’s update given the recent excitement on the team and in the public about Perseverance’s discovery of a potential biosignature, a feature that may have a biological origin but needs more data or further study before reaching a conclusion about the absence or presence of life.
      This past July, ~160 members of the Mars 2020 Science Team met in-person in Pasadena—with another ~50 team members dialed in on-line—for three days of presentations, meetings, and team discussion. For a team that spends most of the year working remotely from around the world, we make the most of these rare opportunities for in-person discussion and synthesis of the rover’s latest science results.
      We spent time discussing Perseverance’s most recent science campaign in the Margin unit, an exposure of carbonate-bearing rocks that occurs along the inner rim of Jezero crater. As part of an effort to synthesize what we’ve learned about the Margin unit over the past year, we heard presentations describing surface and subsurface observations collected from the rover’s entire payload. This was followed by a thought-provoking series of presentations that tackled the three hypotheses we’re carrying for the origin of this unit: sedimentary, volcanic (pyroclastic), or crystalline igneous.
      Some of our liveliest discussion occurred during presentations about Neretva Vallis, Jezero’s inlet valley that once fed the sedimentary fan and lake system within the crater. Data from the RIMFAX instrument took center stage as we debated the origin and age relationship of the Bright Angel outcrop to other units we’ve studied in the crater.
      This context is especially important because the Bright Angel outcrop is home to the Cheyava Falls rock, which contains intriguing features we’ve been calling “leopard spots,” small white spots with dark rims observed in red bedrock of Bright Angel. On the last day of the team meeting, data from our recent “Apollo Temple” abrasion at Cheyava Falls was just starting to arrive on Earth, and team members from the PIXL and SHERLOC teams were huddled in the hallway and at the back of the conference room trying to digest these new results in real time. We had special “pop-up” presentations during which SHERLOC reported compelling evidence for organics in the new abrasion, and PIXL showed interesting new data about the light-toned veins that crosscut this rock.
      Between debates about the Margin unit, updates on recently published studies of the Jezero sedimentary fan sequence, and discussion of the newest rocks at Bright Angel, this team meeting was one of our most exciting yet. It also marked an important transition for the Mars 2020 science mission as we prepare to ascend the Jezero crater rim, leaving behind—at least for now—the rocks inside the crater. I can only imagine the interesting new discoveries we’ll make during the upcoming year, and I can’t wait to report back next summer!
      Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      1 day ago
      3 min read Sols 4287-4288: Back on the Road


      Article


      2 days ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      For every NASA astronaut who serves as a public face of human spaceflight, there are thousands of people working behind the scenes to make the agency’s missions a success. Even the smallest tasks impact NASA’s ability to explore and innovate for the benefit of humanity.

      The team of administrative assistants and secretaries who work at the Johnson Space Center in Houston are acutely aware of this fact.

      Whether they are coordinating meetings, arranging travel, or preparing materials and information for Johnson’s leaders, this team of over 90 individuals takes pride in providing critical support for the agency’s programs and managers. “We work hand-in-hand with management to get them where they need to go and ensure they have what they need to continue doing their important work,” said Carla Burnett, an executive assistant in the Center Director’s Office who is also the lead for all of Johnson’s administrative staff.

      Carla Burnett participates in NASA’s celebration of the 60th anniversary of President John F. Kennedy’s historic Moon speech, held at Rice Stadium in Houston on Sept. 12, 2022. Image courtesy of Carla Burnett Burnett has turned her long-standing passion for administrative work into a 41-year career at Johnson. She was just a youngster when she started working in the Astronaut Office mailroom – an opportunity that came through her high school’s Office Education Program. “Being a meek and mild high school student, sitting there with the astronauts, going through all of their fan mail – I was in awe! It was an absolute honor,” she said. That experience and earning recognition as her high school’s Office Education Student of the Year confirmed for Burnett that administrative work was the right career path for her. She said that fidelity and perseverance launched her from the Astronaut Office mailroom to a position as a crew secretary for two space shuttle flights. “Being a servant and helping others is what I really love about administrative work,” she said.

      Today, Burnett supports Johnson’s senior executives and serves as a central resource for the rest of the administrative team. “They are all very self-sufficient and work within their own organizations,” she explained, but she may coordinate team-wide meetings, celebrations, or trainings, and she is always available to help answer questions. “We work consistently as a cohesive team. We are knowledgeable and, may I add, exceptional at what we do because we do it for the benefit and success of our Johnson family, NASA, and a plethora of communities!”

      Burnett’s dedication to service is reflected across the administrative team, as is a commitment to caring for others. Edwina Gaines, administrative assistant for the Extravehicular Activity and Human Surface Mobility Program, said that being an instrument of team success and the opportunity to build long-lasting friendships are the most rewarding parts of her job. “That connection to people is important,” she said. “It’s important for me to know who I’m supporting or working with.”

      Edwina Gaines snaps a selfie during a professional development event for administrative professionals in 2023. Gaines joined the Johnson team as a contractor nearly 20 years ago thanks to an opportunity that arose from her volunteer work at church. A church partner, the Houston Area Urban League, was helping a NASA subcontractor fill a secretarial position through the Small Business Administration’s HUBZone Program. Gaines got the job.

      Since then, she has supported four programs and two institutional organizations, getting to know several agency leaders quite well. Gaines said she paid attention to little details – like which managers preferred printed materials over presentations, how they organized their offices, and when they typically stopped for coffee or something to eat – and worked to stay one step ahead of them. She recalled one occasion when she realized a manager had not taken a break in five hours and brought her something to drink. “It’s about taking care of the people who are doing the mission. If you don’t take care of yourself, you can’t complete the mission,” she said.

      Rick Pettis, the administrative officer for the Center Operations Directorate, appreciates being part of a great team. Pettis has worked at Johnson since 2014, when he retired from the U.S. Navy after 23 years. “I enjoy helping people with problem solving,” he said. “Every day there will be someone who calls me to ask, ‘How do I get this done?’”

      Rick Pettis poses with a spacesuit display.Image courtesy of Rick Pettis The administrative team’s work involves other highlights, as well. “When I met my first astronaut, I was in awe,” said Dottie Workman, a secretary supporting Johnson’s External Relations Office. “I couldn’t believe that someone so important was walking around the campus just like everyone else. He was so nice – he shook my hand and took the time to talk to me.”

      Workman has been a civil servant for 52 years and 29 of those have been spent at Johnson. “My career has taken me all over the United States and Germany,” she said. “When my son was in the military and stationed at Ft. Sam Houston in San Antonio he said, ‘Mom, why don’t you move to Texas?’ I didn’t have a good reason to say no, so here I am!”

      Dottie Workman met J.J. Watt, former professional football player with the Houston Texans, during his visit to Johnson Space Center. Image courtesy of Dottie Workman. Outside of meeting and interacting with astronauts, Workman said being able to share NASA with her family and friends is her favorite part of working at Johnson. “It is always exciting to see their reaction,” she said.

      Burnett is thankful for a united team that understands the value of their work. “I’m grateful to work with a group of professionals who know the significance of propelling today’s men and women into the next generation of deep space for years to come,” she said. “We are Artemis proud!”
      View the full article
    • By NASA
      2 min read
      NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking achievements. The mission team was recently recognized by the American Institute of Aeronautics and Astronautics (AIAA)with the 2024 Space Systems Award during this year’s AIAA ASCEND event, held July 29 to Aug. 2 in Las Vegas.​
      APL’s Geffrey Ottman (left), electrical systems engineer on NASA’s DART (Double Asteroid Redirection Test) and APL’s Betsy Congdon (center), who served as the mechanical systems engineer on the mission, accepted the 2024 American Institute of Aeronautics and Astronautics (AIAA) Space Systems Award on behalf of the team during this year’s AIAA ASCEND event, which was held from July 29 to Aug. 2 in Las Vegas, Nevada. Credit: AIAA The award, presented by the AIAA Space Systems Technical Committee, celebrates outstanding achievements in the architecture, analysis, design and implementation of space systems. The DART team was lauded for “outstanding achievement in the development and operation of the DART spacecraft, completing humanity’s first in-space demonstration of planetary defense technology.”
      Designed, built and operated for NASA by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, the DART spacecraft was launched in 2021 and, roughly 10 months later, successfully impacted the asteroid Dimorphos in the fall of 2022. The deliberate collision altered the asteroid’s orbit around its larger companion asteroid, Didymos, by 33 minutes. That historic achievement showcased the potential to divert hazardous asteroids, offering a critical tool for safeguarding Earth from real possible impacts in the future.
      The Space Systems Award has regularly recognized extraordinary achievements in space system design and implementation. The DART mission joins a distinguished list of past recipients who have significantly advanced the field of aerospace science and technology. 
      APL managed the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. NASA provided support for the mission from several centers, including the Jet Propulsion Laboratory in Southern California; Goddard Space Flight Center in Greenbelt, Maryland; Johnson Space Center in Houston; Glenn Research Center in Cleveland; and Langley Research Center in Hampton, Virginia.
      Share








      Details
      Last Updated Aug 21, 2024 Editor Bill Keeter Related Terms
      DART (Double Asteroid Redirection Test) Planetary Defense Coordination Office View the full article
    • By NASA
      2 min read
      Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award 
      Rahul Ramachandran of NASA IMPACT, left, Elizabeth Fancher of NASA IMPACT, Ankur Kumar of the University of Alabama in Huntsville (UAH), Sujit Roy of UAH, Raghu Ganti of IBM Research, David McKenzie of NASA, Muthukumaran Ramasubramanian of UAH, Iksha Gurung of UAH, and Manil Maskey of NASA IMPACT, right, accept the NASA Marshall Space Flight Center Group Achievement Award on Thursday, August 15, 2024 at NASA Marshall. NASA NASA’s science efforts aim to empower scientists with the tools to perform research into our planet and universe. To this end, a collaborative effort between NASA and IBM created an AI geospatial foundation model, which was released as an open-source application in 2024. 
      Trained on vast amounts of NASA Earth science data, the foundation model can be adapted for Earth science applications such as flood, burn scar, and cropland studies. Tailoring the model for a specific task takes far less data than the original training set, providing an easy path for researchers to perform AI-powered studies. 
      For their groundbreaking work on this project, the development team behind the foundation model has received the NASA Marshall Space Flight Center Group Achievement Award. Their success with the model showcases their commitment to advancing AI and scientific research and will inspire progress in this field for years to come.
      The team members from NASA’s Marshall Space Fight Center /IMPACT (Interagency Implementation and Advanced Concepts Team) are:
      Rahul Ramachandran  Manil Maskey  Elizabeth Fancher  The team members from the University of Alabama in Huntsville (UAH) are: 
      Sujit Roy  Ankur Kumar  Christopher Phillips  Iksha Gurung  Muthukumaran Ramasubramanian The team members from IBM are: 
      Ranjini Bangalore  Juan Bernabe-Moreno  Dario Augusto Borges Oliveira  Linsong Chu  Blair Edwards  Paolo Fraccaro  Carlos Gomes  Raghu Ganti  Adnan Hoque  Johannes Jakubik  Levente Klein  Devyani Lambhate  Gabby Nyirjesy  Naomi Simumba  Johannes Schmude  Mudhakar Srivatsa  Harini Srinivasan  Daniela Szwarcman  Rob Parkin  Kommy Weldemariam  Campbell Watson  Bianca Zadrozny  The team members from Clark University are:
      Hamed Alemohammad  Michael Cecil  Steve Li  Sam Khallaghi  Denys Godwin  Maryam Ahmadi  Fatemeh Kordi To learn more about the NASA projects improving accessible science discovery for the benefit of all, visit the Open Science at NASA page. 
      Share








      Details
      Last Updated Aug 15, 2024 Related Terms
      Open Science Explore More
      5 min read How NASA Citizen Science Fuels Future Exoplanet Research


      Article


      1 week ago
      3 min read Meet NASA Interns Shaping Future of Open Science


      Article


      3 weeks ago
      4 min read Mapping the Red Planet with the Power of Open Science


      Article


      2 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...