Jump to content

Sols 4300-4301: Rippled Pages


Recommended Posts

  • Publishers
Posted

3 min read

Sols 4300-4301: Rippled Pages

A grayscale photograph of the Martian surface from the Curiosity rover captures parts of the rover in the bottom half of the frame, including a crosspiece imprinted with its name and a line drawing of Curiosity. On the dark soil just below that is a very large, craggy rock in medium gray, while ahead of that is a much larger, much darker rock in the rover’s path, with the side showing looking like the raggedy edge view of the pages of a book torn in half.
NASA’s Mars rover Curiosity prepares for a thorough examination of the unusual, dark “Tungsten Hills” rocks in front of it, studying these rugged boulders covered in paper-thin sedimentary layers, some of which contain intriguing ripple structures that may have formed in running water or windblown sand. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4298 — Martian day 4,298 of the Mars Science Laboratory mission — on Sept. 8, 2024, at 06:35:57 UTC.
NASA/JPL-Caltech

Earth planning date: Monday, Sept. 9, 2024

With today’s plan, Curiosity completes its most southerly planned exploration of the Gediz Vallis channel. From here, our rover will head north and climb out of the channel to explore terrain to the west. Our planned drive to the “Tungsten Hills” rocks, named for a famous mining district near Bishop, California, completed successfully over the weekend, placing a pile of unusual dark rocks within our workspace. Curiosity is currently in the “Bishop” quadrangle on our map, so all targets in this area of Mount Sharp are named after places in the Sierra Nevada and Owens Valley of California. On sols 4300-4301, Curiosity will perform a thorough examination of these rugged boulders, which are covered in paper-thin sedimentary layers like the pages of a book (see image). Some layers have intriguing ripple structures that may have formed in running water or windblown sand. These features are the prime targets for contact science and remote observation at this location.

On Sol 4300, Curiosity will obtain ChemCam laser spectra and Mastcam imagery on a part of the closest plate-like rock called “Bonita Flat,” after a high valley above the southern Kern River canyon in Sequoia National Forest. ChemCam will also obtain telescopic views of a section of the Gediz Vallis channel banks with its RMI camera. Mastcam will take a mosaic of the upper reaches of the channel, then turn its cameras on the interesting bedrock of “Coffeepot Canyon,” honoring a ravine along the precipitous East Fork of the Kaweah River canyon in Sequoia National Park, unfortunately now engulfed in a huge wildfire.

The first science block ends with atmospheric observations, including a dust-devil movie, supra-horizon cloud imaging, and Mastcam measurement of dust in the air across the crater. Curiosity will then use its arm to brush the dust from the closest block in an area dubbed “Pond Lily Lake,” for a petite meadow lake atop the canyon wall of the San Joaquin River, downstream of Devil’s Postpile National Monument. This cleared spot will then be imaged by MAHLI and Mastcam, and its composition will be measured by APXS spectroscopy. MAHLI will perform an intricate “dog’s eye” maneuver to obtain detailed images of ripples in “Window Cliffs,” named after sheer walls above the spectacular fault-controlled Kern River canyon west of 14,505-foot Mount Whitney, the tallest peak in the lower 48 states. MAHLI wraps up a very full day of work by imaging the scalloped edge of the largest nearby block, dubbed “Boneyard Meadow” for a wetland in the western Sierra foothills where many sheep sadly perished due to a late spring snowstorm in 1877.

Early on sol 4301, Curiosity will use Mastcam to thoroughly document the Tungsten Hills in pre-sunrise morning light. Later in the day, a second science block starts with ChemCam spectroscopy and Mastcam imagery of “Castle Domes,” honoring the granite domes of Castle Valley, acclaimed as some of the most beautiful mountain scenery in Kings Canyon National Park. ChemCam RMI will perform telescopic observations of the channel floor. Mastcam will look for possible sulfur rocks at the base of the Tungsten Hills blocks in a target named “Hummingbird Lake,” for an alpine lake at 10,000 feet between Bloody and Lundy Canyons near Mono Lake. This science block of the plan ends with Navcam deck monitoring, dust measurement, and a large dust-devil survey. Curiosity will then drive north, taking a MARDI “sidewalk” video of the terrain under the rover during the drive.

Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated
Sep 10, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4498-4499: Flexing Our Arm Once Again
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 30, 2025 — Sol 4496, or Martian day 4,496 of the Mars Science Laboratory mission — at 20:12:48 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Monday, March 31, 2025
      Planning today began with two pieces of great news. First, our 50-meter drive (about 164 feet) from the weekend plan completed successfully, bringing us oh-so-close to finally driving out of the small canyon that we’ve been traversing through and toward the “boxwork” structures to our southwest. Second, we passed our “Slip Risk Assessment Process” (SRAP), confirming that all six of Curiosity’s wheels are parked firmly on solid ground. Avid readers of this blog will be familiar with last week’s SRAP challenges, which prevented us from using the rover’s arm for the entire week. With a green light on SRAP, we were finally able to put our suite of contact science instruments back to work today.
      The arm gets to work early on the first sol of this plan, with an APXS integration on “Los Osos,” a bedrock target in our workspace, after it has been cleared of the ubiquitous Martian dust by DRT. The rest of our arm activities consist of a series of MAHLI observations later in the afternoon, both of Los Osos and “Black Star Canyon.”
      Of course, just because we managed to get contact science in this plan doesn’t mean we’re letting our remote sensing instruments take a break. In fact, we have more than two hours of remote sensing, split between the two sols and the two science teams (Geology and Mineralogy [GEO] and Atmosphere and Environment [ENV]). GEO will be using Mastcam to survey both the highs and the lows of the terrain, with mosaics of “Devil’s Gate” (some stratigraphy in a nearby ledge) and some small troughs close to the rover. We’ll also be getting even more Mastcam images of “Gould Mesa,” an imaging target in many previous plans, as we continue to drive past it. ChemCam gets involved with a LIBS observation of “Fishbowls,” which will also be imaged by Mastcam, a post-drive AEGIS, and two RMI mosaics of Gould Mesa and “Torote Bowl,” which was also imaged over the weekend.
      ENV’s activities are fairly typical for this time of year as Curiosity monitors the development of the Aphelion Cloud Belt (ACB) with several Navcam cloud movies, as well as seasonal changes in the amount of dust in and above Gale with Navcam line-of-sight observations and Mastcam taus. We’ll also be taking a Navcam dust devil movie to see if we can catch any cold-weather wind-driven dust movement. ENV also filled this plan with their usual set of REMS, RAD, and DAN observations.
      The drive planned today is significantly shorter than the one over the weekend, at just about 10 meters (about 33 feet). This is because we’re driving up a small ridge, which limits our ability to see what’s on the other side. Although our rover knows how to keep itself safe, we still prefer not to drive through terrain that we can’t see in advance, if it can be avoided. Once we’ve got a better eye on what lies in front of us, we will hopefully be able to continue our speedy trek toward the boxwork structures.
      Share








      Details
      Last Updated Apr 03, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4495-4497: Yawn, Perched, and Rollin’


      Article


      3 days ago
      3 min read Visiting Mars on the Way to the Outer Solar System


      Article


      6 days ago
      2 min read Sols 4493-4494: Just Looking Around


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4495-4497: Yawn, Perched, and Rollin’
      NASA’s Mars rover Curiosity acquired this image of the upcoming “boxwork” structures to its west, using its Chemistry & Camera (ChemCam) Remote Micro-Imager (RMI). The ChemCam instrument studies the chemical composition of rocks and soil, using a laser to vaporize materials, then analyze their elemental composition using an on-board spectrograph. The ChemCam RMI is a high-resolution camera atop the rover’s mast. Curiosity captured this image on March 27, 2025 — Sol 4493, or Martian day 4,493 of the Mars Science Laboratory mission — at 15:35:21 UTC. NASA/JPL-Caltech/LANL Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Friday, March 28, 2025
      Womp, womp. Another SRAP (Slip Risk Assessment Process) issue due to wheels being perched on these massive layered sulfate rocks. With our winter power constraints as tight as they are, though, keeping the arm stowed freed up more time to check some lines off our rover’s weekend list. To do: SAM activity to exercise Oven 2 (check!), Navcam 360-degree “phase function” sky movie to monitor scattering of Martian clouds (check!), APXS atmospheric measurements of argon (check!), ChemCam passive sky measurements of oxygen (check!), and a drive of about 50 meters (about 164 feet) to the southwest (check!). Curiosity gets busy on the weekends so us PULs can do some lounging. 
      On the Mastcam team, we’ve been pretty busy in the layered sulfate unit. The rocks are rippled, layered, fractured, and surrounded by sandy troughs. Where did it all come from? What current and past processes are at play in this area? This weekend we’re collecting 70 images to help figure that out. ChemCam is helping by collecting chemistry measurements of the lowest block in this Navcam image, with two targets close by aptly named “Solana Beach” and “Del Mar.” To help conserve power, we’ve been trying to parallelize our activities as much as possible. Recently this means Mastcam has been taking images while ChemCam undergoes “TEC Cooling” to get as cold as possible before using their laser. 
      We’re all hoping the arm can come back from vacation next week.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Blogs Explore More
      3 min read Visiting Mars on the Way to the Outer Solar System


      Article


      3 days ago
      2 min read Sols 4493-4494: Just Looking Around


      Article


      4 days ago
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4493-4494: Just Looking Around
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
      Earth planning date: Wednesday, March 26, 2025
      It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
      The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4491-4492: Classic Field Geology Pose
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam), showing the rover’s right-front wheel perched on a small, angular block, where it ended its weekend drive of about 75 feet (23 meters). In the interest of stability, the Curiosity team prefers to have all six rover wheels on the ground before deploying its 7-foot-long robotic arm (2.1 meters), so they opted for remote sensing observations instead, then another drive higher in the canyon. Curiosity captured this image on March 23, 2025 — sol 4489, or Martian day 4,489 of the Mars Science Laboratory mission — at 15:24:49 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, March 24, 2025
      If you’ve ever seen a geologist in the field, you may have seen a classic stance: one leg propped up on a rock, knee bent, head down looking at the rocks at their feet, and arm pointing to the distant stratigraphy. Today Curiosity decided to give us her best field geologist impression. The weekend drive went well and the rover traversed about 23 meters (about 75 feet), but ended with the right front wheel perched on an angular block. In the Front Hazcam image above, you can see the right front wheel on a small block, and the rover’s shadow with the mast staring out at all the exciting rocks to explore. Great pose, but not what we want for planning contact science! We like to have all six wheels on the ground for stability before deploying the robotic arm. So instead of planning contact science today, the team pivoted to a lot of remote sensing observations and another drive to climb higher in this canyon.
      I was on shift as Long Term Planner today, and it was fun to see the team quickly adapt to the change in plans. Today’s two-sol plan includes targeted remote sensing and a drive on the first sol, followed by an untargeted science block on the second sol.
      On Sol 4491, ChemCam will acquire a LIBS observation of a well-laminated block in our workspace named “Big Narrows,” followed by long-distance RMI observations coordinated with Mastcam to assess an interesting debris field at “Torote Bowl.” The team planned a large Mastcam mosaic to characterize the stratigraphy at Texoli butte from a different viewing geometry than we have previously captured. Mastcam will also be used to investigate active surface processes in the sandy troughs nearby, and an interesting fracture pattern at “Bronson Cave.” Then Curiosity will drive further to the south and take post-drive imaging to prepare for the next plan. On the second sol the team added an autonomously selected ChemCam AEGIS target, along with Navcam movies to monitor clouds, wind direction, and dust.
      Keep on roving Curiosity, and please watch your step!
      Share








      Details
      Last Updated Mar 26, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      2 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      5 days ago
      3 min read Shocking Spherules!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4486-4487: Ankle-Breaking Kind of Terrain!
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 18, 2025 — sol 4484, or Martian day 4,484 of the Mars Science Laboratory mission — at 11:54:13 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Earth planning date: Wednesday, March 19, 2025 
      This terrain is a tricky drive, with rocks angled chaotically all around. One of our geologists remarked that they wouldn’t like to even walk over this without solid boots coming way up over the ankles — this is definitely the kind of terrain to result in twisted and broken ankles! So it wasn’t too unexpected that the drive we had planned on Monday cut short after 18 meters (about 59 feet). Fortunately, we ended up both at a workspace with abundant bedrock and in an orientation that allowed us to pass SRAP (our “Slip Risk Assessment Process”).  
      The rover planners were quickly able to find a spot to brush, so we have a coordinated target on “Palm Grove,” one of the laminated rocks in the lower half of the accompanying image. APXS and MAHLI will look at this target on the first sol of the plan, and then ChemCam LIBS and Mastcam will look at it on the second sol. Although the bulk of the bedrock is relatively nodule free, ChemCam will look at the nodular target “Refugio” to compare to the more dominant, nodule-poor bedrock. 
      On Monday, our workspace included some very interesting layers in the bedrock that might represent preserved sand ripples, but sadly, as Conor reported on Monday, we didn’t pass SRAP, which precluded any contact science. However, today we ended up near rocks that had similar layer geometry, and will acquire a MAHLI “Dog’s Eye” or mosaic image of these rocks at “Duna Vista” and two Mastcam 5×3 mosaics (“Bayside Trail” and “Oso Flaco”) on other examples.  
      Mastcam is taking several other images here. A 14×3 mosaic will capture the “nearfield” or area close to the rover, and a set of four further images focus on four distinct trough features, to help us better understand ongoing modification of the surface. Further afield, the “Quartz Hill” and “Pino Alto” mosaics look at areas of fragmented bedrock which may be similar to the “Humber Park” outcrop we analyzed this past weekend. Even further from the rover, ChemCam will acquire RMI (Remote Micro Imager) images of the “Boxworks” and an almost circular depression (“Torote Bowl”) whose origin is not clear. 
      The environmental theme group (ENV) planned a Mastcam tau (to look at dust in the atmosphere) and a Navcam dust-devil survey (to look for dust devils!) for the first sol of the plan. On the second sol, we fill out the movies with Navcam movies looking toward the south of the crater (suprahorizon, cloud shadow, and zenith movies) and a Mastcam sky survey.  
      In between the movies on the second sol, our drive is planned to take us another 34 meters (about 112 feet)… but we will have to see how far our intrepid rover will make it on this tricky terrain. Slow and steady will win this race!
      Share








      Details
      Last Updated Mar 21, 2025 Related Terms
      Blogs Explore More
      3 min read Shocking Spherules!


      Article


      2 hours ago
      4 min read Sols 4484-4485: Remote Sensing on a Monday


      Article


      1 day ago
      2 min read Sols 4481-4483: Humber Pie


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...