Members Can Post Anonymously On This Site
15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
-
Similar Topics
-
By NASA
Dr. Annie Meier (second from left) and her team inside the Applied Chemistry Lab at NASA’s Kennedy Space Center in Florida began supplementing their normal workload in mid-2023 with efforts to improve the lab’s sustainable practices. In 2024, the laboratory became the first at NASA to receive certification from the non-profit My Green Lab for its efforts in sustainability.NASA/Kim Shiflett NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.
The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.
“When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”
The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.
While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.
“I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”
After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.
After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.
“We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”
The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.
As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.
“It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”
The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.
“Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”
The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.
View the full article
-
By NASA
Successfully deployed from the space shuttle Challenger during the February 1984 STS-41B mission, the Westar 6 and Palapa B2 communications satellites ended up in incorrect orbits due to failures of their upper stage rockets. During STS-51A in November 1984, Discovery’s second trip into space, the crew of Commander Frederick H. “Rick” Hauck, Pilot David M. Walker, and Mission Specialists Joseph P. Allen, Anna L. Fisher, and Dale A. Gardner worked as a team to not only deploy two new satellites but also to retrieve the two wayward but otherwise healthy satellites for return to Earth. Hauck and Walker piloted Discovery to rendezvous with each satellite in turn, Allen and Gardner retrieved them during two spacewalks, and Fisher grappled and placed them in the payload bay for return to Earth. After refurbishment, both satellites returned to space.
Left: The STS-51A crew of Dale A. Gardner, left, David M. Walker, Anna L. Fisher, Frederick “Rick” H. Hauck, and Joseph P. Allen. Right: The STS-51A crew patch.
NASA originally designated Hauck, Walker, Allen, Fisher, and Gardner as a crew in November 1983 and assigned them to STS-41H, a mission aboard Challenger planned for late September 1984 to either deploy the second Tracking and Data Relay Satellite (TDRS) or fly a classified payload for the Department of Defense. Due to ongoing problems with the Inertial Upper Stage that failed to put the first TDRS satellite in its correct orbit during STS-6, NASA canceled STS-41H and shifted Hauck’s crew to STS-51A. In February 1984, an agreement between NASA and the Canadian government added an as-yet unnamed Canadian payload specialist to the STS-51A crew. Managers later named the Canadian as Marc Garneau and reassigned him to STS-41G.
A shuffling of payloads following the STS-41D launch abort resulted in STS-51A now deploying the Anik D2 satellite for Canada and Leasat 1 (also known as Syncom IV-1) for the U.S. Navy. By early August, the launch date had slipped to Nov. 2, with NASA considering the possibility of retrieving the two wayward satellites from STS-41B, officially adding that task on Aug. 13. NASA selected Allen in 1967 as one of 11 scientist-astronauts, while the rest of the crew hail from the Class of 1978. Hauck, on his second mission after serving as pilot on STS-7, has the distinction as the first from his class to command a shuttle mission. Allen and Gardner had each flown one previous mission, STS-5 and STS-8, respectively, while for Walker and Fisher STS-51A represented their first flight. Fisher has the distinction as the first mother in space.
Left: After its arrival from the Orbiter Processing Facility, workers in the Vehicle Assembly Building (VAB) prepare to lift Discovery for mating with an External Tank (ET) and Solid Rocket Boosters (SRBs). Middle: Workers lift Discovery to stack it with the ET and SRBs. Right: The completed stack prepares to leave the VAB for the rollout to Launch Pad 39A.
Discovery arrived back at NASA’s Kennedy Space Center (KSC) in Florida on Sept. 10, returning from Edwards Air Force Base in California following the STS-41D mission. Workers towed it to the Orbiter Processing Facility (OPF) the next day to begin the process of refurbishing it for STS-51A. On Oct. 18, they rolled it over to the Vehicle Assembly Building (VAB), for stacking with an External Tank and twin Solid Rocket Boosters.
At NASA’s Kennedy Space Center in Florida, space shuttle Discovery rolls out to Launch Pad 39A, with the Saturn V rocket on display in the foreground.
The completed stack rolled out to Launch Pad 39A on Oct. 23. Two days later, the five-member STS-51A crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch. The crew returned to KSC on Nov. 5, the day the countdown began for a planned Nov. 7 launch. High upper-level winds that day forced a one-day delay.
Left: STS-51A astronaut Dale A. Gardner trains for the capture of a satellite using the Apogee Kick Motor Capture Device. Middle: Astronaut Anna L. Fisher trains to use the Canadian-built Remote Manipulator System, or robotic arm. Right: As part of the Terminal Countdown Demonstration Test, the STS-51A astronauts practice rapid evacuation from the launch pad.
Following deployment from Challenger during STS-41B, the upper stages of both the Westar 6 and Palapa B2 satellites malfunctioned, leaving them in non-useable 160-by-600-mile-high orbits instead of the intended 22,300-mile-high geostationary orbits required for their normal operations. While both satellites remained healthy, their own thrusters could not boost them to the proper orbits. NASA devised a plan to have astronauts retrieve the satellites during spacewalks using the jetpack known as the Manned Maneuvering Unit (MMU), after which the shuttle’s Canadian-built Remote Manipulator System (RMS) or robot arm would grapple them and place them into the cargo bay for return to Earth. Astronauts had demonstrated the capability of the MMU during the STS-41C Solar Max satellite repair mission in April 1984 and NASA felt confident of its ability to capture and return Westar and Palapa.
In the weeks prior to STS-51A, ground controllers lowered the orbits of both satellites and reduced their spin rates from 50 to 1 rpm to enable capture by the shuttle astronauts. Engineers at NASA’s Johnson Space Center in Houston developed the Apogee Kick Motor Capture Device (ACD), otherwise known as the stinger due to its appearance, to allow an astronaut to capture the satellites while flying the MMU. Once relocated over the payload bay, a second astronaut would remove the satellite’s omnidirectional antenna with pruning shears and install an Antenna Bridge Structure (ABS) with a grapple fixture over the satellite’s main antenna dish. Allen would fly the MMU to capture Palapa, then he would switch roles with Gardner who would capture Westar. Fisher would use the RMS to grapple the satellites by this second fixture and lower them into specially built cradles to secure them into the payload bay.
Left: The STS-51A crew leaves crew quarters on their way to Launch Pad 39A. Middle: Liftoff of Discovery on the STS-51A mission. Right: View inside Discovery’s payload bay shortly after orbital insertion – the top of Anik D2 is visible, with Leasat 1 hidden behind it.
Space shuttle Discovery roared off KSC’s Launch Pad 39A on Nov. 8, 1984, to begin the STS-51A mission and mark the orbiter’s first return to space. For Gardner, launch day coincided with his 36th birthday. The launch took place just 26 days after the landing of the previous mission, STS-41G, a then record-breaking turnaround time between shuttle flights. Eight and a half minutes after liftoff, Discovery and its five-member crew reached space and shortly thereafter settled into a 182-by-172-mile-high initial orbit. As their first order of business, the crew checked out the RMS to ensure its functionality for the satellite captures later in the mission. They also performed the first rendezvous burn to begin the approach to the Palapa satellite. The crew then settled down for its first night’s sleep in orbit.
Left: Nighttime deploy of the Anik D2 satellite. Middle: Deploy of the Leasat 1 satellite. Right: Leasat 1 as it departs from Discovery.
The primary activity of the second flight day involved Allen deploying the 2,727-pound Anik D2 satellite via a spring ejection mechanism, occurring on time and with no issues. The crew also circularized the shuttle’s orbit at 186 miles. The next day, Gardner deployed the 17,000-pound Leasat 1 using the Frisbee style mechanism used to deploy the first Leasat during STS-41D two months earlier. With the satellite deployments complete, the crew began to focus on the rendezvous maneuvers to bring them close to the Palapa B2 satellite while Allen and Gardner verified the functionality of their spacesuits. On flight day 4, the astronauts reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in order to prevent the spacewalking astronauts from developing the bends inside the spacesuits that operated at 4.3 psi.
Left: During the first spacewalk, Jospeh P. Allen captures the Palapa B2 satellite. Middle: Anna L. Fisher grasps Allen and Palapa with the Remote Manipulator System, or robotic arm. Right: Allen, left, and Dale A. Gardner prepare to place Palapa in its cradle in the payload bay.
On the fifth mission day, after Hauck and Walker piloted Discovery to within 35 feet of Palapa, Allen and Gardner exited the airlock to begin the spacewalk portion of the satellite capture. Allen donned the MMU mounted on the side wall of the cargo bay, attached the stinger to its arms, and flew out to Palapa. Once there, he inserted the stinger into the satellite’s Apogee Kick Motor bell and using the MMU’s attitude control system stopped Palapa’s spin.
Fisher then steered the RMS to capture a grapple fixture mounted on the stinger between Allen and the satellite. She then maneuvered them over the payload bay where Gardner waited to remove its omnidirectional antenna and install the bridge structure. However, Gardner could not attach the ABS to the satellite due to an unexpected clearance issue on the satellite. Using a backup plan, Allen undocked from the stinger, leaving it attached to the satellite as well as the RMS, and stowed the MMU in the payload bay. With Allen now holding the satellite by its antenna, Gardner attached an adaptor to the bottom end of the satellite to secure it in its cradle in the payload bay. This plan worked and Allen and Gardner completed the spacewalk in exactly six hours.
Left: Dale A. Gardner flies the Manned Maneuvering Unit to capture Westar 6 during the second spacewalk. Middle: Anna L. Fisher operates the Remote Manipulator System from Discovery’s aft flight deck. Right: Gardner, left, and Joseph P. Allen maneuver Westar prior to placing it in its cradle in the payload bay.
Between the two spacewalk days, the crew serviced the spacesuits, conducted routine maintenance on the shuttle, and prepared for the second rendezvous, this time to retrieve Westar. Allen and Gardner switched roles for the second spacewalk on flight day seven, with Gardner flying the MMU to capture Westar. The astronauts repeated the procedure from the first spacewalk, except for not removing the omni antenna so they could use it as a handhold. With Westar secured in the payload bay, Gardner and Allen completed the second spacewalk in 5 hours and 42 minutes.
Left: Dale A. Gardner, left, and Joseph P. Allen pose at the end of the Remote Manipulator System controlled by Anna L. Fisher, holding a For Sale sign above the two retrieved satellites secured in Discovery’s payload bay. Middle: Inflight photo of the STS-51A crew after the successful satellite retrievals. Right: View inside Discovery’s payload bay shortly before the deorbit burn, with Westar 6 in the foreground and Palapa B2 behind it.
During their final full day in space, Discovery’s crew repressurized the shuttle’s cabin to 14.7 psi and tidied the cabin in preparation for reentry. On Nov. 16, the astronauts closed the payload bay doors and fired the Orbital Maneuvering System engines to begin the descent back to Earth. Hauck guided Discovery to a smooth landing at KSC, completing a flight of 7 days, 23 hours, and 45 minutes. The crew had traveled nearly 3.3 million miles and completed 127 orbits around the Earth. The next day, workers towed Discovery to the OPF to begin preparing it for its next flight, STS-51C in January 1985.
Left: Discovery streaks over Houston on its way to land at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Discovery moments before touchdown at KSC. Right: NASA officials greet the STS-51A astronauts as they exit Discovery.
As a postscript, STS-51A marked the last flight to use the MMUs, and the last untethered spacewalks until 1994 when STS-64 astronauts tested the Simplified Aid for EVA Rescue (SAFER). All subsequent spacewalks on the space shuttle and the International Space Station used safety tethers, with the SAFER as a backup in case a crew member disconnects from the vehicle.
Left: In the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida, workers inspect the Westar 6, left, and Palapa B2 satellites in Discovery’s payload bay. Right: The STS-51A crew, with Lloyd’s of London representative Stephen Merritt, sitting at right, during their visit to London.
On Dec. 7, 1984, in a ceremony at the White House, President Ronald W. Reagan presented the STS-51A crew with the Lloyd’s of London – the company had insured the two satellites they returned to Earth – Silver Medal for Meritorious Salvage Operations. Fisher has the distinction as only the second woman to receive that award. In February 1985, Lloyd’s flew the crew to London on the Concorde for a week of activities, including addressing the Lloyd’s underwriters and tea with Prince Charles at Kensington Palace.
Hong Kong-based AsiaSat purchased the Westar 6 satellite, refurbished it, and relaunched it as AsiaSat 1 on April 7, 1990, on a Chinese CZ-3 rocket. Title to the Palapa B2 satellite returned to Indonesia after its relaunch as Palapa B2R on April 13, 1990, aboard a Delta rocket.
Read recollections of the STS-51A mission by Hauck, Allen, and Fisher in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-51A mission.
Explore More
1 min read Oral History with Jon A. McBride, 1943 – 2024
Article 18 hours ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere
Article 4 days ago 3 min read Halloween on the International Space Station
Article 1 week ago View the full article
-
By NASA
NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.
The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.
“The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.
Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.
“By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”
As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.
NASA will continue providing best practices and offer additional opportunities to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.
The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/humans-in-space/commercial-space/
View the full article
-
By NASA
Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
“Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission.
One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
Judges Needed
NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
To learn more about the challenge, visit:
https://www.nasa.gov/power-to-explore
-end-
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
Share
Details
Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.
These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.
Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”
The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.
The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.
Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.
The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”
After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
1 min read NASA Awards Contract for Refuse and Recycling Services
Article 5 days ago 5 min read We Are All Made of Cells: Space and the Immune System
Article 6 days ago 2 min read NASA Brings Drone and Space Rover to Air Show
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Quesst: The Vehicle
Explore NASA’s History
Share
Details
Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.