Jump to content

Kyle Helson Finds EXCITE-ment in Exoplanet Exploration


Recommended Posts

  • Publishers
Posted

Almost a decade ago, then-grad student Kyle Helson contributed to early paperwork for NASA’s EXCITE mission. As a scientist at Goddard, Helson helped make this balloon-based telescope a reality: EXCITE launched successfully on Aug. 31.

Name: Kyle Helson
Title: Assistant Research Scientist
Organization: Observational Cosmology Lab (Code 665), via UMBC and the GESTAR II cooperative agreement with NASA Goddard

Kyle Helson stands in front of large grey C-17 airplane with "U.S. Airforce" in large black letters on the side. Kyle and the plane are on a snow and ice-covered ground. He wears a red coat with black pants. There are seven people working in the background.
Dr. Kyle Helson is an assistant research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Photo credit: Dr. Amy Bender

How did you know you wanted to work at NASA Goddard?

When I was finishing my physics Ph.D. at Brown University in 2016, I was talking to Ed Wollack and Dave Chuss at Goddard about the NASA postdoc program, and they suggested I apply. Luckily, I got the postdoc fellowship to come here to Goddard to work on cosmic microwave background detector testing and other related research.

I don’t think I would have realized or been interested in coming here had I not had that NASA Space Technology Research Fellowship when I was in grad school and gotten the opportunity to spend some time here and work with Ed and Dave.

What is the name of your team that you’re working with right now?

One of the projects I work on is the Exoplanet Climate Infrared TELescope (EXCITE). EXCITE is a scientific balloon-borne telescope that is designed to measure the spectra of hot, Jupiter-like exoplanet atmospheres in near-infrared light.

What is your role for that?

I do a little bit of everything. During grad school, I worked on the first few iterations of the proposal for EXCITE back in 2015 and 2016.

Over the past few years here at Goddard, I’ve been responsible for parts of a lot of the different subsystems like the cryogenic receiver, the gondola, the electronics, and integration and testing of the whole payload.

Last year, we went to Fort Sumner, New Mexico, for an engineering flight. Unfortunately, we were not able to fly for weather reasons. We went back last month, and I was again part of the field deployment team. We take the whole instrument, break it down, carefully ship it all out to New Mexico, put it back together, test it, and get it ready for a flight.

Six people wearing hard hats and yellow safety vests stand in front of a large spacecraft on a crane with large wheels on either side.
Kyle Helson (far right) and part of the EXCITE team stand in front of EXCITE Fort Sumner, New Mexico in Oct. 2023. EXCITE successfully launched on Aug. 31, 2024.
Photo credit: Annalies Kleyheeg

What is most interesting to you about your role here at Goddard?

What I like about working on a project like EXCITE is that we get to kind of do a little bit of everything.

We’ve been able to see the experiment from concept and design to actually getting built, tested and hopefully flown and then subsequent data analysis after the flight. What I think is really fun is being able be with an experiment for the entire life cycle.

How do you help support Goddard’s mission?

We’re studying exoplanets, which definitely fits within the scientific mission of Goddard. We’re also a collaboration between Goddard other academic institutions, like Arizona State, like Brown University, Cornell, and several other places, and so we’re also members of the larger scientific research community beyond NASA.

We also have a number of graduate students working on EXCITE. Ballooning is a good platform for training students and young researchers to learn how to build and design instruments, do data analysis, etc. One of the missions of NASA and Goddard is to train early career scientists like graduate students and post docs, and balloons provide a good platform for that as well.

Balloon missions like EXCITE also provide a good platform for technology advancement and demonstration in preparation for future satellite missions.

How did you know cosmology was what you wanted to pursue?

When I was a kid, I loved space. I wanted to be an astronaut when I was a kid. I even went to space camp.

The first time I ever got to see physics was a middle-school science class. That was the first time we ever learned physics or astronomy that was deeper than just identifying planets or constellations. We started to learn how we could use math to measure or predict experiments.

When I was in college, I remember talking to my undergraduate academic adviser, Glenn Starkman, and talking about what research I might like to do over the summer between sophomore and junior year of college. I wasn’t really sure what I wanted to do or what I was interested in, and he suggested I talk to some of the professors doing astrophysics and cosmology research and see if they had space for me in their lab.

I ended up finding a great opportunity working in a research lab in college — so it was working in the physics department in Case Western.
That’s where I first started learning about computer-aided design (CAD), and designing things in CAD, and that’s where I first learned how things get made in a machine shop, like on a mill, or a lathe. These skills have come in handy ever since, because I do a lot of design work in the lab. And I was lucky growing up that my dad was really hands-on and liked to fix things and build things and he taught me a lot of those skills as well.

A young Kyle Helson sits in front of a control panel wearing a headset at space camp.
“When I was a kid, I loved space,” said Kyle Helson. “I wanted to be an astronaut when I was a kid. I even went to space camp.”
Photo courtesy of Kyle Helson

Who has influenced you in your life?

My dad had a big influence. I think all the different people I’ve had the opportunity to learn from and work with who have been mentors along the way. My research advisers, professor John Ruhl in college, professor Greg Tucker in grad school, and Dr. Ed Wollack as a postdoc have all been very influential. Additionally, I have had the opportunity to work with a lot of very good post docs and research scientists during my career, Dr. Asad Aboobaker, Dr. Britt Reichborn-Kjennerud, Dr. Michele Limon, among others.

Throughout a career, there are tons of other people on the way from whom you pick up little things here and there that stick with you. You look back and you realize five years later you still do this one thing a certain way because someone helped you and taught you this skill or technique.

Where is a place you’d like to travel to?

Since I was lucky enough to go to Antarctica in graduate school, I figured that is the hardest continent to travel to, so now I have a mission to go to every continent. I’ve been to North America, I’ve been to South America, I’ve been to Asia, Europe, and Australia and New Zealand, but I’ve never been to Africa.

Four men on racing bikes during a keirin race on a track. They are in a single file line behind a man on a motorized bike wearing a blue helmet.
Kyle Helson (second from left) races the keirin at the Valley Preferred Cycling Center in Breinigsville, PA.
Photo Credit Dr. Vishrut Garg

What are your hobbies, or what do you enjoy doing?

I’m a competitive track cyclist. I started racing bikes in collegiate racing as a grad student at Brown. Many summers I’ve spent many weekends driving and flying all over the U.S. to race in the biggest track cycling events in the country.

What would be your three-word-memoir?

Curious, compassionate, cat-dad.

By Tayler Gilmore
NASA’s Goddard Space Flight Center in Greenbelt, Md

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Sep 10, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously. 
      Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.” 

      His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight. 

      Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit. 
      Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars. 

      “I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects. 

      Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.” 
      Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.

      And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration. 

      “I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said. 
      View the full article
    • By NASA
      5 min read
      Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      A linear-mode avalanche photodiode array in the test dewar. The detector is the dark square in the center. Michael Bottom, University of Hawai’i One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are capable of hosting life. While thousands of planets have been discovered around other stars, the vast majority of these detections have been made via indirect methods, that is, by detecting the effect of the planet on the star’s light, rather than detecting the planet’s light directly. For example, when a planet passes in front of its host star, the brightness of the star decreases slightly.
      However, indirect methods do not allow for characterization of the planet itself, including its temperature, pressure, gravity, and atmospheric composition. Planetary atmospheres may include “biosignature” gases like oxygen, water vapor, carbon dioxide, etc., which are known to be key ingredients needed to support life as we know it. As such, direct imaging of a planet and characterization of its atmosphere are key to understanding its potential habitability.
      But the technical challenges involved in imaging Earth-like extrasolar planets are extreme. First such planets are detected only by observing light they reflect from their parent star, and so they typically appear fainter than the stars they orbit by factors of about 10 billion. Furthermore, at the cosmic distances involved, the planets appear right next to the stars. A popular expression is that exoplanet imaging is like trying to detect a firefly three feet from a searchlight from a distance of 300 miles.
      Tremendous effort has gone into developing starlight suppression technologies to block the bright glare of the star, but detecting the light of the planet is challenging in its own right, as planets are incredibly faint. One way to quantify the faintness of planetary light is to understand the photon flux rate. A photon is an indivisible particle of light, that is, the minimum detectable amount of light. On a sunny day, approximately 10 thousand trillion photons enter your eye every second. The rate of photons entering your eye from an Earth-like exoplanet around a nearby star would be around 10 to 100 per year. Telescopes with large mirrors can help collect as much of this light as possible, but ultra-sensitive detectors are also needed, particularly for infrared light, where the biosignature gases have their strongest effects. Unfortunately, state-of-the-art infrared detectors are far too noisy to detect the low level of light emitted from exoplanets.
      With support from NASA’s Astrophysics Division and industrial partners, researchers at the University of Hawai’i are developing a promising detector technology to meet these stringent sensitivity requirements. These detectors, known as avalanche photodiode arrays, are constructed out of the same semiconductor material as conventional infrared sensors. However, these new sensors employ an extra “avalanche” layer that takes the signal from a single photon and multiplies it, much like an avalanche can start with a single snowball and quickly grow it to the size of a boulder. This signal amplification occurs before any noise from the detector is introduced, so the effective noise is proportionally reduced. However, at high avalanche levels, photodiodes start to behave badly, with noise exponentially increasing, which negates any benefits of the signal amplification. Late University of Hawai’i faculty member Donald Hall, who was a key figure in driving technology for infrared astronomy, realized the potential use of avalanche photodiodes for ultra-low-noise infrared astronomy with some modifications to the material properties.
      University of Hawai’i team members with cryogenic dewar used to test the sensors. From left to right, Angelu Ramos, Michael Bottom, Shane Jacobson, Charles-Antoine Claveau. Michael Bottom, University of Hawai’i The most recent sensors benefit from a new design including a graded semiconductor bandgap that allows for excellent noise performance at moderate amplification, a mesa pixel geometry to reduce electronic crosstalk, and a read-out integrated circuit to allow for short readout times. “It was actually challenging figuring out just how sensitive these detectors are,” said Michael Bottom, associate professor at the University of Hawai’i and lead of development effort. “Our ‘light-tight’ test chamber, which was designed to evaluate the infrared sensors on the James Webb Space Telescope, was supposed to be completely dark. But when we put these avalanche photodiodes in the chamber, we started seeing light leaks at the level of a photon an hour, which you would never be able to detect using the previous generation of sensors.”
      The new designs have a format of one megapixel, more than ten times larger than the previous iteration of sensors, and circuitry that allows for tracking and subtracting any electronic drifts. Additionally, the pixel size and control electronics are such that these new sensors could be drop-in replacements for the most common infrared sensors used on the ground, which would give new capabilities to existing instruments.
      Image of the Palomar-2 globular cluster located in the constellation of Auriga, taken with the linear-mode avalanche photodiode arrays, taken from the first on-sky testing of the sensors using the University of Hawai’i’s 2.2 meter telescope. Michael Bottom, University of Hawai’i Last year, the team took the first on-sky images from the detectors, using the University of Hawai’i’s 2.2-meter telescope. “It was impressive to see the avalanche process on sky. When we turned up the gain, we could see more stars appear,” said Guillaume Huber, a graduate student working on the project. “The on-sky demonstration was important to prove the detectors could perform well in an operational environment,” added Michael Bottom.
      According to the research team, while the current sensors are a major step forward, the megapixel format is still too small for many science applications, particularly those involving spectroscopy. Further tasks include improving detector uniformity and decreasing persistence. The next generation of sensors will be four times larger, meeting the size requirements for the Habitable Worlds Observatory, NASA’s next envisioned flagship mission, with the goals of imaging and characterizing Earth-like exoplanets.
      Project Lead: Dr. Michael Bottom, University of Hawai’i
      Sponsoring Organization:  NASA Strategic Astrophysics Technology (SAT) Program
      Share








      Details
      Last Updated Feb 18, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
      6 min read Webb Reveals Rapid-Fire Light Show From Milky Way’s Central Black Hole


      Article


      5 mins ago
      2 min read Hubble Captures a Cosmic Cloudscape


      Article


      4 days ago
      5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars


      Article


      5 days ago
      View the full article
    • By NASA
      Explore This Section Science Science Activation An Afternoon of Family Science… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      An Afternoon of Family Science and Rocket Exploration in Alaska
      On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of rocket exploration, hands-on activities, and stargazing inside a planetarium. This event was free and open to the public. Despite their frigid winter weather, 200 attendees were curious about the scientific endeavors of Alaska-based researchers alongside cutting-edge investigations conducted by NASA rocket scientists.
      Families and friends in attendance learned about two NASA rocket missions that would study the flickering and vanishing auroras: Ground Imaging to Rocket investigation of Auroral Fast Features (GIRAFF) and Black and Diffuse Aurora Science Surveyor (BaDASS). Visitors had an opportunity to sign up for text notifications related to the launch window. The planetarium presentations touch on Heliophysics Big Ideas that align with the three questions that drive NASA’s heliophysics research:
      What are the impacts of the changing sun on humanity? How do Earth, the solar system, and the heliosphere respond to changes on the sun? What causes the sun to vary? The event also offered sun-related hands-on activities provided by the University of Alaska Museum of the North.
      This event was offered to the community in association with the Science For Alaska Lecture Series and the 2025 NASA Sounding Rocket campaign. Every attendee left with something inspiring to think about. Parents and educators interested in learning more about auroras and do participatory science may check out NASA’s Aurorasaurus citizen science project.
      The Geophysical Institute at the University of Alaska Fairbanks is a Co-Investigating team for the NASA Heliophysics Education Activation Team (NASA HEAT), which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Aurora Educational Resource List by Aurorasaurus
      Families constructed and decorated their paper rockets. Katelin Avery It was so much fun! We are receiving rave reviews from our families and the surrounding community. THANK YOU AGAIN FOR COLLABORATING WITH US!

      Fairbanks BEST Homeschool
      Share








      Details
      Last Updated Feb 14, 2025 Editor Earth Science Division Editorial Team Related Terms
      Science Activation Citizen Science Heliophysics Explore More
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      1 day ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA asked artists to imagine the future of deep space exploration in artwork meant to inspire the Artemis Generation. The NASA Moon to Mars Architecture art challenge sought creative images that represent the agency’s bold vision for crewed exploration of the lunar surface and the Red Planet. The agency has selected the recipients of the art challenge competition.  
      This collage features all the winners of the NASA Moon to Mars Architecture Art Challenge.Jimmy Catanzaro, Jean-Luc Sabourin, Irene Magi, Pavlo Kandyba, Antonella Di Cristofaro, Francesco Simone, Mia Nickell, Lux Bodell, Olivia De Grande, Sophie Duan The challenge, hosted by contractor yet2 through NASA’s Prizes, Challenges, and Crowdsourcing program, was open to artists from around the globe. Guidelines asked artists to consider NASA’s Moon to Mars Architecture development effort, which uses engineering processes to distil NASA’s Moon to Mars Objectives into the systems needed to accomplish them. NASA received 313 submissions from 22 U.S. states and 47 countries.
      The architecture includes four segments of increasing complexity. For this competition, NASA sought artistic representations of the two furthest on the timeline: the Sustained Lunar Evolution segment and the Humans to Mars segment.
      The Sustained Lunar Evolution segment is an open canvas for exploration of the Moon, embracing new ideas, systems, and partners to grow to a long-term presence on the lunar surface. Sustained lunar evolution means more astronauts on the Moon for longer periods of time, increased opportunities for science, and even the large-scale production of goods and services derived from lunar resources. It also means increased cooperation and collaboration with international partners and the aerospace industry to build a robust lunar economy.   The Humans to Mars segment will see the first human missions to Mars, building on the lessons we learn from exploring the Moon. These early missions will focus on Martian exploration and establishing the foundation for a sustained Mars presence. NASA architects are examining a wide variety of options for transportation, habitation, power generation, utilization of Martian resources, scientific investigations, and more. Final judging for the competition took place at NASA’s annual Architecture Concept Review meeting. That review brought together agency leadership from NASA mission directorates, centers, and technical authorities to review the 2024 updates to the Moon to Mars Architecture. NASA selected the winning images below during that review:
      Sustained Lunar Evolution Segment Winners
      First Place:
      Jimmy Catanzaro – Henderson, Nevada
      Second Place:
      Jean-Luc Sabourin – Ottawa, Canada
      Third Place (Tie):
      Irene Magi – Prato, Italy
      Pavlo Kandyba – Kyiv, Ukraine
      Humans to Mars Segment Winners
      First Place (Tie):
      Antonella Di Cristofaro – Chieti, Italy
      Francesco Simone – Gatteo, Italy
      Third Place:
      Mia Nickell – Suwanee, Georgia
      Under 18 Submission Winners
      First Place:
      Lux Bodell – Minnetonka, Minnesota
      Second Place:
      Olivia De Grande – Milan, Italy
      Third Place:
      Sophie Duan – Ponte Vedra, Florida
      The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
      View the full article
    • By NASA
      This artist’s concept visualizes a super-Neptune world orbiting a low-mass star near the center of our Milky Way galaxy. Scientists recently discovered such a system that may break the current record for fastest exoplanet system, traveling at least 1.2 million miles per hour, or 540 kilometers per second.NASA/JPL-Caltech/R. Hurt (Caltech-IPAC) Astronomers may have discovered a scrawny star bolting through the middle of our galaxy with a planet in tow. If confirmed, the pair sets a new record for the fastest-moving exoplanet system, nearly double our solar system’s speed through the Milky Way.
      The planetary system is thought to move at least 1.2 million miles per hour, or 540 kilometers per second.
      “We think this is a so-called super-Neptune world orbiting a low-mass star at a distance that would lie between the orbits of Venus and Earth if it were in our solar system,” said Sean Terry, a postdoctoral researcher at the University of Maryland, College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Since the star is so feeble, that’s well outside its habitable zone. “If so, it will be the first planet ever found orbiting a hypervelocity star.”
      A paper describing the results, led by Terry, was published in The Astronomical Journal on February 10.
      A Star on the Move
      The pair of objects was first spotted indirectly in 2011 thanks to a chance alignment. A team of scientists combed through archived data from MOA (Microlensing Observations in Astrophysics) – a collaborative project focused on a microlensing survey conducted using the University of Canterbury Mount John Observatory in New Zealand — in search of light signals that betray the presence of exoplanets, or planets outside our solar system.
      Microlensing occurs because the presence of mass warps the fabric of space-time. Any time an intervening object appears to drift near a background star, light from the star curves as it travels through the warped space-time around the nearer object. If the alignment is especially close, the warping around the object can act like a natural lens, amplifying the background star’s light.
      This artist’s concept visualizes stars near the center of our Milky Way galaxy. Each has a colorful trail indicating its speed –– the longer and redder the trail, the faster the star is moving. NASA scientists recently discovered a candidate for a particularly speedy star, visualized near the center of this image, with an orbiting planet. If confirmed, the pair sets a record for fastest known exoplanet system.NASA/JPL-Caltech/R. Hurt (Caltech-IPAC) In this case, microlensing signals revealed a pair of celestial bodies. Scientists determined their relative masses (one is about 2,300 times heavier than the other), but their exact masses depend on how far away they are from Earth. It’s sort of like how the magnification changes if you hold a magnifying glass over a page and move it up and down.
      “Determining the mass ratio is easy,” said David Bennett, a senior research scientist at the University of Maryland, College Park and NASA Goddard, who co-authored the new paper and led the original study in 2011. “It’s much more difficult to calculate their actual masses.”
      The 2011 discovery team suspected the microlensed objects were either a star about 20 percent as massive as our Sun and a planet roughly 29 times heavier than Earth, or a nearer “rogue” planet about four times Jupiter’s mass with a moon smaller than Earth.
      To figure out which explanation is more likely, astronomers searched through data from the Keck Observatory in Hawaii and ESA’s (European Space Agency’s) Gaia satellite. If the pair were a rogue planet and moon, they’d be effectively invisible – dark objects lost in the inky void of space. But scientists might be able to identify the star if the alternative explanation were correct (though the orbiting planet would be much too faint to see).
      They found a strong suspect located about 24,000 light-years away, putting it within the Milky Way’s galactic bulge — the central hub where stars are more densely packed. By comparing the star’s location in 2011 and 2021, the team calculated its high speed.
      This Hubble Space Telescope image shows a bow shock around a very young star called LL Ori. Named for the crescent-shaped wave made by a ship as it moves through water, a bow shock can be created in space when two streams of gas collide. Scientists think a similar feature may be present around a newfound star that could be traveling at least 1.2 million miles per hour, or 540 kilometers per second. Traveling at such a high velocity in the galactic bulge (the central part of the galaxy) where gas is denser could generate a bow shock. NASA and The Hubble Heritage Team (STScI/AURA); Acknowledgment: C. R. O’Dell (Vanderbilt University) But that’s just its 2D motion; if it’s also moving toward or away from us, it must be moving even faster. Its true speed may even be high enough to exceed the galaxy’s escape velocity of just over 1.3 million miles per hour, or about 600 kilometers per second. If so, the planetary system is destined to traverse intergalactic space many millions of years in the future.
      “To be certain the newly identified star is part of the system that caused the 2011 signal, we’d like to look again in another year and see if it moves the right amount and in the right direction to confirm it came from the point where we detected the signal,” Bennett said.
      “If high-resolution observations show that the star just stays in the same position, then we can tell for sure that it is not part of the system that caused the signal,” said Aparna Bhattacharya, a research scientist at the University of Maryland, College Park and NASA Goddard who co-authored the new paper. “That would mean the rogue planet and exomoon model is favored.”
      NASA’s upcoming Nancy Grace Roman Space Telescope will help us find out how common planets are around such speedy stars, and may offer clues to how these systems are accelerated. The mission will conduct a survey of the galactic bulge, pairing a large view of space with crisp resolution.
      “In this case we used MOA for its broad field of view and then followed up with Keck and Gaia for their sharper resolution, but thanks to Roman’s powerful view and planned survey strategy, we won’t need to rely on additional telescopes,” Terry said. “Roman will do it all.”
      Download additional images and video from NASA’s Scientific Visualization Studio.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Feb 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Exoplanets Astrophysics Exoplanet Discoveries Exoplanet Science Goddard Space Flight Center Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Science & Research Studying Exoplanets The Universe Explore More
      4 min read Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed!
      On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond…
      Article 7 months ago 3 min read Discovery Alert: Water Vapor Detected on a ‘Super Neptune’
      The atmosphere of a “super Neptune” some 150 light-years distant contains water vapor, a new…
      Article 3 years ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
      Article 1 year ago
      View the full article
  • Check out these Videos

×
×
  • Create New...