Jump to content

The dome-shaped Brandburg Massif near the Atlantic coast of central Namibia


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.
      Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.
      The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.
      The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.
      As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities.   This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
      Near Space Network Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate View the full article
    • By NASA
      The Sturgeon Moon rises behind a replica Saturn V rocket at the U.S. Space & Rocket Center in Huntsville, Alabama on Monday, August 19, 2024. Over 99% full when it rose, the moon was a rare combination of a blue moon and a supermoon, a phenomenon that will not repeat until 2027. NASA/Michael DeMocker A super blue Moon rises over Huntsville, Alabama, home to NASA’s Marshall Space Flight Center and the U.S. Space and Rocket Center, Aug. 19. Visible through Wednesday, Aug. 21, the full Moon is both a supermoon and a Blue Moon. As the Moon reaches its closest approach to Earth, the Moon looks larger in the night sky with supermoons becoming the biggest and brightest full Moons of the year. While not blue in color, the third full Moon in a season with four full Moons is called a “Blue Moon.”
      Huntsville is known as the “Rocket City” because of its proximity to NASA Marshall, which manages vital propulsion systems and hardware, engineering technologies, cutting-edge science, and launch vehicles for Apollo, shuttle, and Artemis. (NASA/Michael DeMocker)
      Explore More
      3 min read NASA Marshall Names Roger Baird Associate Director
      Article 19 hours ago 17 min read The Marshall Star for August 14, 2024
      Article 7 days ago 3 min read NASA Challenge Seeks ‘Cooler’ Solutions for Deep Space Exploration
      Article 1 week ago View the full article
    • By NASA
      On Aug. 10, 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed their 21-day quarantine after returning from the Moon. The historic nature of their mission resulted in a very busy postflight schedule for Armstrong, Collins, and Aldrin, starting with celebrations in New York, Chicago, Los Angeles, and Houston. Scientists continued to examine the lunar samples the Apollo 11 astronauts returned from the Sea of Tranquility. NASA set its sights on additional lunar landing missions, announcing plans for a pinpoint landing by Apollo 12 in November 1969 that also included visiting the robotic Surveyor 3 that landed on the Moon in 1967. The agency announced the crews for the Apollo 13 and 14 missions planned for 1970. Including prime and backup crews, NASA had 18 astronauts training for lunar landing missions. Support astronauts brought that number to 32.
      Apollo 11
      Following their return from the Moon, Armstrong, Collins, and Aldrin completed their 21-day quarantine in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. During their stay in the LRL, they worked on their pilot reports, conducted postflight debriefs including with the Apollo 12 crew, and Armstrong celebrated his 39th birthday. On the evening of Aug. 10, they left the relative quiet of the LRL for a very hectic next few months. After spending a day reuniting with their families, the three reported back to their offices and held their postflight press conference on Aug. 12. The next day, they flew first to New York for a massive ticker tape parade, then on to Chicago for another big parade, ending the day in Los Angeles with a state dinner hosted by President Richard M. Nixon and attended by most active astronauts, members of Congress, 44 state governors, and 83 foreign ambassadors. They returned to Houston for a welcome home parade on Aug. 16, ending the day with a barbecue party and a tribute to the entire NASA team in the Astrodome, emceed by Frank Sinatra. Meanwhile, on Aug. 14, engineers shipped the Command Module Columbia to its manufacturer, the North American Rockwell plant in Downey, California, for postflight inspections. Scientists in the LRL eagerly continued their examinations of the 48 pounds of lunar material the Apollo 11 astronauts returned from the Sea of Tranquility.

      Left: In the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin line up for food in the LRL’s dining area. Middle: Buzz, left, Mike, and Neil enjoy a meal together in the LRL’s dining room. Right: Neil celebrates his 39th birthday in the LRL.

      Left: NASA engineer John K. Hirasaki opens the hatch to the Apollo 11 Command Module Columbia for the first time in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Mike Collins sits in Columbia’s hatch in the LRL. Right: While still aboard the U.S.S. Hornet, Mike wrote this inscription inside Columbia.
      Collins’ inscription inside Columbia, first written while aboard the U.S.S. Hornet, and retraced in the LRL:
      Spacecraft 107, alias Apollo 11, alias “Columbia”
      The Best Ship to Come Down the Line
      God Bless Her.
      Michael Collins CMP

      Aug. 5, 1969. In the Lunar Receiving Laboratory, scientists open the second Apollo 11 Lunar Sample Return Container and begin to examine the rock and soil samples.

      Left: On Aug. 10, 1969, Buzz, left, Mike, and Neil exit the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, ending their 21-day quarantine. Middle: Morning of Aug. 12, Neil reports to work at his office in MSC’s Building 4. Right: Afternoon of Aug. 12, Buzz, left, Neil, and Mike meet the press in MSC’s auditorium.
      Armstrong’s comments to open the press conference:
      “It was our pleasure to participate in one great adventure. It’s an adventure that took place, not just in the month of July, but rather one that took place in the last decade. We … had the opportunity to share that adventure over its developing and unfolding in the past months and years. It’s our privilege today to share with you some of the details of that final month of July that was certainly the highlight, for the three of us, of that decade.”

      Aug. 13, 1969. Left: An estimated four million people attend the ticker tape parade in New York City for the Apollo 11 astronauts. Middle: The ticker tape parade in Chicago drew two million people. Right: The Apollo 11 astronauts and their wives at the official state dinner in Los Angeles, hosted by President Richard M. Nixon.

      Left: Aug. 14, 1969. NASA Administrator Thomas O. Paine, left, accompanies Buzz, Mike, and Neil on the plane back to Houston. Middle: Aug. 16. Ticker tape parade in downtown Houston attended by 250,000 people. Right: Aug. 16. Buzz, left, Neil, and Mike with emcee Frank Sinatra during the barbecue party in the Houston Astrodome.

      Left: On Aug. 14, at Houston’s Ellington Air Force Base, workers load the Apollo 11 Command Module Columbia into a Super Guppy for transport to the North American Rockwell plant in Downey, California. Middle: Workers in Downey inspect Columbia on Aug. 19. Right: Workers prepare to place Columbia in a chamber to bakeout any residual moisture to ready it for public display.

      Apollo 11 science experiments. Left: Neil rolled up the Solar Wind Composition experiment at the end of the spacewalk and placed it inside the Apollo Lunar Sample Return Container that arrived in the Lunar Receiving Laboratory on July 26, 1969. Middle: Astronomers sent the first successful beam to the Laser Ranging Retroreflector on Aug. 1, 1969, and it remains available for use to this day. Right: The Passive Seismic Experiment returned useful data for three weeks but stopped responding to commands on Aug. 24, 1969, most likely due to overheating in the lunar Sun.
      Apollo 12
      At the time Apollo 11 returned from its historic journey, NASA had plans for nine more Apollo Moon landing missions. On July 29, Apollo Program Director Samuel C. Phillips at NASA Headquarters in Washington, D.C., announced the launch date, Nov. 14, 1969, and the landing site, in the Ocean of Storms, for Apollo 12. The main goals of this second lunar landing included a precision touchdown near the Surveyor 3 spacecraft that landed there in April 1967, and an expanded science program conducted during two spacewalks, including the deployment of the first Apollo Lunar Surface Experiment Package (ALSEP), a suite of science instruments. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, Command Module Pilot (CMP) Richard F. Gordon, and Lunar Module Pilot (LMP) Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin, began training after their assignment in April. In addition to rehearsing aspects of their flight in mission simulators, they practiced for the descent and precision landing, for the two spacewalks planned during their 31.5-hour lunar surface stay, including visiting and examining Surveyor 3, and for the expanded geology exploration. The latter included a three-day geology field trip to Hawaii with simulated lunar traverses. At NASA’s Jet Propulsion Laboratory in Pasadena, California, the astronauts received a detailed briefing on the Surveyor spacecraft. At NASA’s Kennedy Space Center (KSC) in Florida, workers had already assembled their Saturn V rocket, with rollout to Launch Pad 39A planned for early September. The U.S. Navy chose the U.S.S. Hornet (CVS-12), the carrier that successfully recovered Apollo 11, to reprise its role as prime recovery ship for Apollo 12.

      Left: Lunar front side showing the landing sites for Apollo 11 and 12. Right: Surveyor 3 took this panorama of its landing site in April 1967, also the targeted site for Apollo 12.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, and Alan L. Bean at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia. Middle left: Apollo 12 backup astronaut David R. Scott at the LLRF. Middle right: Conrad, left, and Bean during the Aug. 9-11 geology field trip to Hawaii. Right: Conrad practices opening an Apollo Lunar Sample Return Container during simulated one-sixth gravity aboard a KC-135 aircraft.
      Apollo 13 and 14
      On Aug. 6, 1969, NASA announced the crews for Apollo 13 and 14, the third and fourth Moon landing missions. At the time of the announcement, Apollo 13 had a planned launch date in March 1970 and a proposed landing site at the Fra Mauro region in the lunar highlands, the first landing site not in the relatively flat lunar maria. Apollo 14 aimed for a July 1970 mission with the Crater Censorinus area in the lunar highlands to the southeast of the Sea of Tranquility as a tentative landing site. Plans for both missions called for two lunar surface excursions totaling about six hours with a lunar stay duration of 35 hours. As on Apollo 12, the crews planned to deploy an ALSEP suite of science instruments, in addition to conducting the geology field work of documenting and collecting rock and soil samples for return to scientists on Earth for analysis. 

      The Apollo 13 crew of James A. Lovell, left, Thomas K. “Ken” Mattingly, and Fred W. Haise.
      The prime crew for Apollo 13 consisted of Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise. Lovell would make his fourth space mission aboard Apollo 13, having flown on Gemini VII and XII as well as orbiting the Moon during Apollo 8 – making him the first person to travel to the Moon twice. Neither Mattingly nor Haise had flown in space before, although Haise had served with Lovell on the Apollo 11 backup crew. The Apollo 13 backup crew consisted of John W. Young, John L. Swigert, and Charles M. Duke. Young had flown three previous missions, Gemini 3 and X and more recently aboard Apollo 10, the Moon landing dress rehearsal flight. Swigert and Duke had no spaceflight experience, although Duke served as capsule communicator during Apollo 10 as well as during the Apollo 11 Moon landing.

      Left: The Saturn V for Apollo 13 rolls out of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida to relocate it from High Bay 2 to High Bay 1. Right: The Apollo 13 Saturn V rolls back in to High Bay 1 of the VAB.
      Flight hardware for Apollo 13 had already arrived at KSC. Workers in the Vehicle Assembly Building (VAB) completed stacking of the three Saturn V rocket stages in High Bay 2 on July 31. They added a boilerplate Apollo spacecraft to the top of the rocket, and in a roll-around maneuver on Aug. 8, the stack left the VAB, crawled to the other side of the building, and rolled back inside to High Bay 1. North American Rockwell delivered the Command and Service Modules to KSC on June 26, where workers in the Manned Spacecraft Operations Building (MSOB) mated the two modules four days later in preparation for preflight testing in altitude chambers. The Lunar Module (LM) ascent and descent stages arrived at KSC on June 27 and 28, respectively, from their manufacturer, the Grumman Aircraft Corporation in Bethpage, New York. Following a docking test between the CM and LM, workers in the MSOB mated the two stages of the LM on July 15.

      The Apollo 14 crew of Alan B. Shepard, left, Stuart A. Roosa, and Edgar D. Mitchell.
      NASA designated Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell as the prime crew for Apollo 14. Shepard, the first American in space when he launched aboard his Freedom 7 spacecraft in May 1961, recently returned to flight status after a surgical intervention cured his Ménière’s disease, an inner ear disorder. Neither Roosa nor Mitchell had spaceflight experience. The backup crew consisted of Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle. Cernan had flown in space twice before, on Gemini IX and more recently on Apollo 10. Evans and Engle had not flown in space before, although Engle earned astronaut wings as a pilot with the U.S. Air Force flying the X-15 rocket plane above the 50-mile altitude required to qualify as an astronaut on three of his 16 flights.

      Left: Apollo 14 astronauts Alan B. Shepard, center, and Edgar D. Mitchell, in baseball cap, during the Idaho geology field trip. Right: Apollo 14 backup crew members Eugene A. Cernan, left, and Joe H. Engle during the Idaho geology field trip.
      The Apollo 14 astronauts jumped right into their geology training. On Aug. 14, Shepard, Mitchell, and Engle spent the day at the United States Geological Service’s (USGS) Crater Field near Flagstaff, Arizona, including getting a geologist’s lecture on the mechanisms of crater formation. On Aug. 22 and 23, Cernan joined them on a geology field trip to Idaho, where they visited Craters of the Moon National Monument, Butte Crater lava tubes, Ammon pumice quarries, and the Wapi volcanic fields. Geologists chose these sites for training because at the time Apollo 14 planned to visit a presumed volcanic area on the Moon.
      NASA management changes

      Left: Samuel C. Phillips, Apollo Program Director at NASA Headquarters in Washington, D.C., during the Apollo 11 launch in the Launch Control Center at NASA’s Kennedy Space Center (KSC) in Florida. Middle left: Rocco A. Petrone, director of launch operations at KSC, seen here at the Apollo 11 rollout, succeeded Phillips. Middle right: George S. Trimble, left, deputy director of the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, with MSC Director Robert R. Gilruth in 1967. Right: Christopher C. Kraft, director of flight operations at MSC, seen here in Mission Control following the Apollo 11 splashdown, succeeded Trimble.
      Several changes in senior NASA leadership took place following Apollo 11. At NASA Headquarters in Washington, D.C., Phillips retired as Apollo Program Director, having served in that position since 1964, and returned to the U.S. Air Force. Rocco A. Petrone, director of launch operations at KSC since 1966, succeeded him. George S. Trimble announced his retirement as MSC deputy director effective Sept. 30, having served in that role since October 1967. In November 1969, MSC Director Robert R. Gilruth named Christopher C. Kraft to succeed Trimble as his deputy.
      To be continued …
      News from around the world in August 1969:
      August 2 – President Nixon the first sitting U.S. president to visit a communist capital when he meets with Romanian President Nicolai Ceausescu in Bucharest.
      August 5 – Mariner 7 returns close-up images during its fly-by of Mars.
      August 14 – NASA accepts seven pilots from the U.S. Air Force’s canceled Manned Orbiting Laboratory as its Group 7 astronauts.
      August 15-18 – Three-day Woodstock music festival in Bethel, New York, draws nearly half a million attendees.
      August 21 – The first GAP store opens in San Francisco.
      Explore More
      7 min read 55 Years Ago: NASA Group 7 Astronaut Selection
      Article 6 days ago 5 min read Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day
      Article 3 weeks ago 20 min read MESSENGER – From Setbacks to Success
      Article 3 weeks ago View the full article
    • By USH
      Mount Kailash is a mountain in Ngari Prefecture, Tibet Autonomous Region of China. It lies in the Kailash Range of the Transhimalaya, in the western part of the Tibetan Plateau. The peak of Mount Kailash is located at an elevation of 6,638 m, near the trijunction between China, India and Nepal. 

      In Tibetan Buddhism, Mount Kailash holds a special place as the Axis Mundi, or the center of the universe. Imagine it as the heart of everything, where heaven and earth meet. This sacred mountain isn't just a random peak; it's like the cosmic hub, connecting different realms together. 
      In the year 1999, an expedition of Russian Scientists led by Dr Ernst Muldashev claimed that Mount Kailash is too perfectly shaped for a natural mountain. They have discovered that the top of Mt. Kailash is actually a man-made vacuum pyramid. It is surrounded by more than 100 other small pyramids. According to preliminary estimates, the direct height of the pyramid complex is between 100 and 1,800 meters, while the Egyptian pyramid is only 146 meters 
      It is also believed to be the site of Lord Shiva, the god of destruction and rebirth as well as where the first human beings were created. 
      According to the legend Shiva has left a giant footprint on the summit  of the mountain. Despite extensive searches, no concrete evidence of  this footprint has ever been found. 
      While exploring Mount Kailash on Google Earth, I spotted a large, unusual anomaly near the summit. It resembles two hands, each with  four visible fingers, positioned opposite each other and seemingly carved into the rock. 
      Could these huge hands be a kind of a 'footprint' of Shiva that people have been searching for? 


      As for climbing up the summit, some daring mountaineers have attempted to do so, but with no luck. It also is said that who climb Mount Kailash age quickly. The time that human takes to age two weeks only take 12 hours in the mountain. Numerous hikers have detailed that they feel like their nails and hairs are developing rapidly within 12 hours. 
      Trekking all the way up to the peak of Mount Kailash is held to be a forbidden act among Hindus for the fear of trespassing the sanctity of the mountain and disturbing the divine energies residing there. 
      Even planes don't fly over Kailash as Mount Kailash is said to possess a mysterious magnetic anomaly that disrupts navigational instruments and disrupts compass readings. This phenomenon has puzzled scientists with no concrete explanation offered to date. 
      Coordinates: 31° 4'4.83"N  81°18'24.47"E
      Mount Kailash is still a mystery. The unconquered peak remains wrapped in myths, legends, and spiritual tales.View the full article
    • By NASA
      Each Aug. 4, Coast Guard Day commemorates the founding on Aug. 4, 1790, of the U.S. Coast Guard as the Revenue-Marine by Secretary of the Treasury Alexander Hamilton. Although considered an internal event for active duty and reserve Coast Guard members, we take the opportunity of Coast Guard Day to honor the astronauts who began their careers in the Coast Guard. To date, NASA has selected three astronauts who served in the Coast Guard: Bruce E. Melnick in 1987, Daniel C. Burbank in 1996, and Andre Douglas in 2021. While Melnick and Burbank have retired from NASA, the decades long relationship between the agency and the Coast Guard carries on with Douglas.

      Left: Coast Guard Day banner. Image credit: courtesy Veteran.com. Right: Official emblem of the U.S. Coast Guard. Image credit: courtesy U.S. Coast Guard.
      Under the guidance of Treasury Secretary Hamilton, the U.S. Congress authorized the establishment of the Revenue-Marine on Aug. 4, 1790. The bill also authorized the building of a fleet of 10 Revenue Service ships known as cutters, used to enforce tariff laws established by Congress. By the 1860s, the organization’s name had changed to the U.S. Revenue Cutter Service. On Jan. 28, 1915, President Woodrow Wilson signed into law an act of Congress that merged the Revenue Cutter Service with the U.S. Life Saving Service, naming the new organization the U.S. Coast Guard, dedicated to saving lives at sea and enforcing the nation’s maritime laws. After 177 years in the Treasury Department, the Coast Guard transferred to the newly formed Department of Transportation on April 1, 1967, and then to the Department of Homeland Security on March 1, 2003.
      Bruce E. Melnick

      Left: Official astronaut portrait of Bruce E. Melnick, Class of 1987. Middle: Melnick aboard space shuttle Discovery during the STS-41 mission that deployed the Ulysses solar polar probe. Right: Melnick on the flight deck of Endeavour during its first flight, STS-49.
      Melnick, a native of Florida, earned a bachelor’s degree in engineering with honors from the U.S. Coast Guard Academy in 1972. During his 20-year career with the U.S. Coast Guard, Melnick’s assignments included serving as operations officer and chief test pilot at the Coast Guard Aircraft Program Office in Grand Prairie, Texas. During his Coast Guard service, Melnick received numerous awards, including two Department of Defense Distinguished Service Medals, two Distinguished Flying Crosses and the Secretary of Transportation Heroism Award. In 1992, he received the U.S. Coast Guard Academy Distinguished Alumni Award. He logged over 5,000 flight hours.. NASA selected Melnick in June 1987 as the first astronaut from the Coast Guard. He completed his training in August 1988, and flew as a mission specialist on Discovery’s STS-41 mission in October 1990. During the four-day flight, he and his crewmates deployed the Ulysses spacecraft to study the Sun’s polar regions. On his second and final spaceflight in May 1992, he served as the flight engineer on STS-49, the first flight of Endeavour. During that mission, the astronauts rescued and repaired the Intelsat VI satellite. He logged more than 300 hours in space. Melnick retired from the U.S. Coast Guard and NASA in July 1992.
      Daniel C. Burbank

      Left: Official astronaut portrait of Daniel C. Burbank, Class of 1996. Middle left: Burbank installs the Elektron oxygen generation unit in the Zvezda Service Module during STS-106. Middle right: Burbank performs a spacewalk during STS-115. Right: Burbank conducts a pulmonary function study while exercising on the bicycle ergometer in the Destiny module during Expedition 30.
      Connecticut-born and Massachusetts native, Burbank received a Bachelor of Science degree in electrical engineering and his commission from the U.S. Coast Guard Academy in May 1985. After attending naval flight training in Pensacola, Florida, he was assigned to Coast Guard Air Station Elizabeth City, North Carolina. In July 1992, Burbank transferred to Coast Guard Air Station Cape Cod, Massachusetts, followed by his assignment in May 1995 to Coast Guard Air Station Sitka, Alaska. Burbank logged over 4,000 flight hours, primarily in Coast Guard helicopters, and flew more than 2,000 missions, including over 300 search and rescue missions. NASA selected Burbank as an astronaut in the class of 1996. During his first spaceflight, the 12-day STS-106 International Space Station assembly mission in September 2000, Burbank and his crewmates prepared the station for the arrival of its first expedition crew. They delivered more than three tons of supplies and installed batteries, power converters, oxygen generation equipment, and a treadmill. He flew his second spaceflight aboard Atlantis in September 2006 on the 12-day STS-115 space station assembly mission. The astronauts delivered and installed the P3/P4 truss and solar arrays, and Burbank took part in one the three spacewalks of the mission, spending 7 hours 11 minutes outside. He flew his third and final mission between November 2011 and April 2012 as a member of Expeditions 29 and 30, serving as Commander of Expedition 30. During the 165-day flight, Burbank and his crewmates participated in nearly 200 experiments and completed 23 major hardware upgrades to the station. During his three missions, Burbank accumulated more than 188 days in space. He retired from NASA in June 2018.
      Andre Douglas

      Left: Official astronaut portrait of Andre Douglas, Class of 2021. Middle: Douglas collects soil samples during simulated moonwalks in Northern Arizona in May 2024. Right: Artemis II backup astronaut Douglas tries on his lunar spacesuit in July 2024. Image credit: Courtesy Andre Douglas.
      Douglas, a Virginia native and 2008 U.S. Coast Guard Academy graduate, served as an active-duty Coast Guard officer from 2008 to 2015. He earned a master’s degree in mechanical engineering and in naval architecture and marine engineering from the University of Michigan, a master’s degree in electrical and computer engineering from Johns Hopkins University and a doctorate in systems engineering from George Washington University. NASA selected Douglas as an astronaut candidate in December 2021, and he completed his training on March 5, 2024. On March 19, the U.S. Coast Guard swore-in Douglas as a commander in the Coast Guard Reserve during a commissioning ceremony in Washington, D.C. On July 3, 2024, NASA named Douglas as a backup crew member for the Artemis II mission to circle the Moon.
      Explore More
      20 min read MESSENGER – From Setbacks to Success
      Article 2 hours ago 5 min read 60 Years Ago: Ranger 7 Photographs the Moon
      Article 4 days ago 9 min read 25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...