Members Can Post Anonymously On This Site
NASA Scientific Balloon Takes Flight With Student-Built Payloads
-
Similar Topics
-
By NASA
NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
NASA Headquarters, Washington
202-358-1600
tiernan.p.doyle@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
650-604-4789
rachel.hoover@nasa.gov
View the full article
-
By NASA
NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Amber Jacobson / Katherine Rohloff
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
Share
Details
Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
-
By NASA
NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
“Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Explore More
8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
Article 1 day ago
r
View the full article
-
By NASA
Media are invited to learn about a unique series of flight tests happening in Virginia in partnership between NASA and GE Aerospace that aim to help the aviation industry better understand contrails and their impact on the Earth’s climate. Contrails are the lines of clouds that can be created by high-flying aircraft, but they may have an unseen effect on the planet – trapping heat in the atmosphere.
The media event will occur from 9 a.m.-12 p.m. on Monday, Nov. 25 at NASA’s Langley Research Center in Hampton, Virginia. NASA Langley’s G-III aircraft and mobile laboratory, as well as GE Aerospace’s 747 Flying Test Bed (FTB) will be on site. NASA project researchers and GE Aerospace’s flight crew will be available to discuss the Contrail Optical Depth Experiment (CODEX), new test methods and technologies used, and the real-world impacts of understanding and managing contrails. Media interested in attending must contact Brittny McGraw at brittny.v.mcgraw@nasa.gov no later than 12 p.m. EST, Friday, Nov. 22.
Flights for CODEX are being conducted this week. NASA Langley’s G-III will follow GE Aerospace’s FTB in the sky and scan the aircraft wake with Light Detection and Ranging (LiDAR) technology. This will advance the use of LiDAR by NASA to generate three-dimensional imaging of contrails to better characterize how contrails form and how they behave over time.
For more information about NASA’s work in green aviation tech, visit:
https://www.nasa.gov/aeronautics/green-aero-tech
-end-
David Meade
Langley Research Center, Hampton, Virginia
757-751-2034 davidlee.t.meade@nasa.gov
View the full article
-
By NASA
5 min read
NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
“The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
“Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
“After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.
Download high-resolution images on NASA’s Scientific Visualization Studio
By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.