Jump to content

Fireworks of Star Formation Light up a Galaxy


HubbleSite

Recommended Posts

low_STSCI-H-p0001a-k-1340x520.png

Pictures obtained with the Hubble telescope reveal episodes of star formation that are occurring across the face of the nearby galaxy NGC 4214. Located some 13 million light-years from Earth, NGC 4214 is forming clusters of new stars from its interstellar gas and dust. In the Hubble image, we can see a sequence of steps in the formation and evolution of stars and star clusters. Clouds of glowing gas surrounding bright stellar clusters dominate the picture.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artists Concept of the WASP-77 A b system. A planet swings in front of its star, dimming the starlight we see. Events like these, called transits, provide us with bounties of information about exoplanets–planets around stars other than the Sun. But predicting when these special events occur can be challenging…unless you have help from volunteers.
      Luckily, a collaboration of multiple teams of amateur planet-chasers, led by researcher Federico R. Noguer from Arizona State University and researchers from NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), has taken up the challenge. This collaboration has published the most precise physical and orbital parameters to date for an important exoplanet called WASP-77 A b.  These precise parameters help us predict future transit events and are crucial for planning spacecraft observations and accurate atmospheric modeling. 
      “As a retired dentist and now citizen scientist for Exoplanet Watch, research opportunities like this give me a way to learn and contribute to this amazingly exciting field of astrophysics,” said Anthony Norris, a citizen scientist working on the NASA-funded Exoplanet Watch project.
      The study combined amateur astronomy/citizen science data from the Exoplanet Watch and ExoClock projects, as well as the Exoplanet Transit Database. It also incorporated data from NASA’s Spitzer Space Telescope, the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and La Silla Observatory. Exoplanet Watch invites volunteers to participate in groundbreaking exoplanet research, using their own telescopes to observe exoplanets or by analyzing data others have gathered. You may have read another recent article about how the Exoplanet Watch team helped validate a new exoplanet candidate.
      WASP-77 A b is a gas giant exoplanet that orbits a Sun-like star. It’s only about 20% larger than Jupiter. But that’s where the similarities to our solar system end. This blazing hot gas ball orbits right next to its star–more than 200 times closer to its star than our Jupiter!
      Want a piece of the action? Join the Exoplanet Watch project and help contribute to cutting-edge exoplanet science! Anyone can participate–participation does not require citizenship in any particular country.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Astrophysics Citizen Science Exoplanet Science Explore More
      4 min read NASA’s Webb Provides Another Look Into Galactic Collisions


      Article


      1 day ago
      4 min read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe


      Article


      2 days ago
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 days ago
      View the full article
    • By NASA
      18 Min Read The Marshall Star for September 18, 2024
      Marshall Welcomes NASA Chief Scientist for Climate, Science Town Hall
      NASA Chief Scientist and Senior Climate Advisor Kate Calvin, center left, joins team members at the agency’s Marshall Space Flight Center for a Climate and Science Town Hall on Sept. 17 in Activities Building 4316. Calvin took part in a question-and-answer session during her visit that was live streamed agencywide. Joining her in the session were, from left, Rahul Ramachandran, research scientist and senior data science strategist for the Science Research and Project Division at Marshall; Marshall Earth Science Branch Chief Andrew Molthan; Marshall Chief Scientist Renee Weber; Marshall Center Director Joseph Pelfrey; and Marshall Science and Technology Office Manager Julie Bassler, who moderated the panel. (NASA/Krisdon Manecke)
      Molthan answers a question during the Climate Town Hall. Topics discussed during the town hall included the response by NASA and Marshall to climate change, the effects of climate change on NASA and Marshall objectives, and how NASA and Marshall are helping organizations around the world respond to climate change. (NASA/Krisdon Manecke)
      › Back to Top
      Space Station Payload Operations Director at Marshall Carries on Family Legacy
      By Celine Smith
      Jacob Onken remembers his father, Jay Onken, waking him up one morning at 3 a.m. when he was 9 years old to watch the International Space Station fly overhead. At the time, his dad was a POD – a payload operations director – at NASA’s Marshall Space Flight Center leading flight controllers who support science experiments aboard the orbiting laboratory 24 hours a day, 365 days a year.
      Jacob Onken is a second-generation payload operations director at NASA’s Marshall Space Flight Center. His father, Jay Onken, also served in the role in 1999. The father and son are the first family members at Marshall to both hold that position. NASA/Danielle Burleson Now, the younger Onken has started a new chapter in his career as a POD at Marshall, following in his father’s footsteps. The father and son are the first family members to serve in this role at Marshall. Onken said that happened by chance, despite growing up NASA-adjacent.
      Jacob Onken began his aerospace career with an internship at Teledyne Brown Engineering while earning a bachelor’s degree in computer science at Auburn University in Alabama. The internship took him to Marshall’s Payload Operations Integration Center – a place his father had worked and often taken him when he was younger. Colleagues warmly remembered the veteran POD and welcomed to the role.
      After graduating with a bachelor’s degree in computer science in 2018, Onken worked as a contractor with Teledyne for NASA. As a data management coordinator (DMC) he sat console and learned to operate data and video systems aboard the space station.
      “I really found myself out here, and I loved it,” he said. “Working in space flight operations is insanely cool and beneficial to humanity.”
      A young Jacob Onken smiles for a family photo while visiting Marshall with his father, Jay Onken, and sister, Elizabeth Onken, in 1998. Photo courtesy of Jacob Onken After training for over a year, he earned his DMC certification and later was assigned as the lead DMC for space station Expeditions 62 and 63. He later served as the DMC training lead, preparing new flight controllers for certification. In this role, he trained 13 DMCs for certification, using a people-based leadership approach he learned from his father.
      Well before the space station flew, Jay Onken was an aerospace engineer whose early career assignments included orbit analysis for the space shuttle and attitude selection for several Spacelab missions. He later was one of the first flight directors for NASA’s Chandra X-Ray Observatory, and following its launch, joined the first group of space station PODs. 
      He went on to become the director of Marshall’s Mission Operations Laboratory in 2005, deputy chief engineer for the Space Launch System in 2014, and director of Marshall’s Space Systems Department in 2016. He retired in 2018 and died in 2021 after battling cancer.
      Jacob Onken continues Jay Onken’s legacy. Colleagues say he embodies similar traits. He often reflects on his father’s advice.
      From left, Jacob Onken during his payload operations director (POD) certification ceremony with former PODs Carrie Olsen, Sam Digesu, Pat Patterson, and Tina Melton in the Payload Operations Center at Marshall. NASA/Craig Cruzen “I was lucky to have my dad, who understood the environment that I was working in,” he said. “I knew his work meant a lot to him. We were always close, but we got even closer. Bonding over the same things was special.”
      In 2022, Onken became the DMC flight operations lead, supporting real-time console and planning operations for that team. In 2023, he joined the Operations Directors Office. After another rigorous training curriculum, he completed his POD certification in January 2024.
      “It’s rewarding and heartwarming to know that the future of space flight operations is in good hands with the new generation,” said Craig Cruzen, the POD training lead who oversaw Onken’s instruction and certification.
      Onken leads a team that communicates with astronauts about the scientific experiments they’re performing on the space station and ensures their safety from the ground.
      As a payload operations director at NASA’s Marshall Space Flight Center, Jacob Onken leads flight controllers in the International Space Station Payload Operations and Integration Team, following in his father’s footsteps. Onken and his father, Jay Onken, are the first family members to both serve in the role at Marshall. (NASA) “My role requires teamwork, trust, and communication,” he said. “I ask myself, ‘How can we work together effectively to get the job done?’”
      While he holds the same position his father held, the space station has evolved, becoming a convergence of science, technology, and innovation. “Jay Onken was a POD when the International Space Station was just beginning,” said former POD Carrie Olsen, now manager of NASA’s Next Gen STEM K-12 education project and a family friend to the Onkens. “The challenge the space station faced back then was its newness,” Olsen explained. “We were still figuring out how to best work with Johnson Space Center, scientists around the world, international partners, and the space station program.”
      Though Marshall had a rich operations history working programs like Apollo, Space Shuttle, Skylab, and Chandra, the space station was truly unlike anything that had come before.
      “Jay’s leadership qualities and integrity helped to build trust across the organization and the agency. This allowed Marshall’s operations team to excel and be recognized as the premier space station science operations center across the globe,” said his former colleague Sam Digesu, currently technical manager of the Payload and Mission Operations Division. “Jacob is on the that same path.”
      Jacob Onken says one of his career goals is to support payload operations on the lunar surface for the Artemis missions. “My dad was around when it started, and hopefully, I’m around to see it through.”
      › Back to Top
      NASA Hosts Observe the Moon Night at U.S. Space & Rocket Center
      The Science Wizard, David Hagerman, right center, entertains the crowd with one of his shows Sept. 14 during Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville. The free public event was part of International Observe the Moon Night, a worldwide celebration encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. NASA’s Planetary Missions Program Office hosted the event at the rocket center. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center. (NASA/Lane Figueroa)
      Audience members react during one of Hagerman’s demonstrations at Observe the Moon Night. (NASA/Lane Figueroa)
      Attendees visit a NASA display during the Observe the Moon Night event. (NASA/Daniel Horton)
      › Back to Top
      ‘Legacy of the Invisible’ Event to Celebrate Marshall’s Contributions to Astrophysics
      The public is invited to join NASA’s Marshall Space Flight Center for a special celebration of art and astronomy in downtown Huntsville on Sept. 20 from 6 to 8 p.m. The event will include a dedication of Huntsville’s newest art installation, “No Straight Lines,” by local artist Float. 
      The celebratory event, “Legacy of the Invisible,” will take place at the corner of Clinton Avenue and Washington Street, coinciding with the 25th anniversary of NASA’s Chandra X-ray Observatory. Attendees will have a chance to meet and hear from NASA experts, as well as meet Float, the artist behind “No Straight Lines,” which aims to honor Huntsville’s rich scientific legacy in astrophysics and highlight the groundbreaking discoveries made possible by Huntsville scientists and engineers.
      Enjoy live music, art vendors, food, and more.
      Learn more about Chandra’s 25th Anniversary.
      › Back to Top
      SLS Program Manager John Honeycutt Delivers Keynote at National Space Club Breakfast
      John Honeycutt, front center, manager of NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, delivers the keynote address at the National Space Club Breakfast on Sept. 17 in Huntsville. Honeycutt provided a detailed presentation to the audience with insight into the operations, accomplishments, and future goals for the SLS Program. The SLS rocket is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. “All elements of the SLS Block I for the first crewed lunar mission of the 21st century are either complete and ready for stacking or are nearing completion,” Honeycutt said. “For more than 60 years, this town – this community – has led the effort to explore space. We aren’t done. SLS and Artemis are the next chapter in that legacy. Led and enabled by folks in this room, at Marshall, and here in North Alabama, we will launch missions to the Moon that will re-write history books, lead to scientific discoveries, and pave the way to Mars.” (NASA/Serena Whitfield)
      › Back to Top
      NASA’s Lunar Challenge Participants to Showcase Innovations During Awards
      NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes Sept. 20 at the Great Lakes Science Center in Cleveland, Ohio.
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      › Back to Top
      Technicians Work to Prepare Europa Clipper for Propellant Loading
      NASA’s Europa Clipper mission moves closer to launch as technicians worked Sept. 11 inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center. 
      Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on Sept. 11.NASA/Kim Shiflett The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.
      Europa Clipper’s launch period opens Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.
      The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.
      Learn more about the mission here.
      › Back to Top
      Marshall to Present 2024 Small Business Awards Sept. 19
      NASA’s Marshall Space Flight Center will host its annual Small Business Industry and Advocate Awards ceremony Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.
      The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.
      NASA speakers include:
      Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters Joseph Pelfrey, center director, NASA Marshall John Cannaday, director, Office of Procurement, NASA Marshall Davey Jones, strategy lead, NASA Marshall David Brock, small business specialist, Office of Small Business Programs, NASA Marshall For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.
      Learn more about Marshall’s small business initiatives.
      › Back to Top
      Printed Engines Propel Next Industrial Revolution
      In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.
      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at NASA’s Marshall Space Flight Center.Credit: NASA The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.
      Meanwhile, a team at NASA’s Marshall Space Flight Center was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.
      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

      Read more here.
      › Back to Top
      Hubble Finds More Black Holes than Expected in Early Universe
      With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI) Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times – either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      NASA’s Marshall Space Flight Center was the lead field center for the design, development, and construction of the space telescope.
      › Back to Top
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Examines a Spiral Star… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Examines a Spiral Star Factory
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 5668. ESA/Hubble & NASA, C. Kilpatrick This NASA/ESA Hubble Space Telescope image features a spiral galaxy in the constellation Virgo named NGC 5668. It is relatively near to us at 90 million light-years from Earth and quite accessible for astronomers to study with both space- and ground-based telescopes. At first glance, it doesn’t seem like a remarkable galaxy. It is around 90,000 light-years across, similar in size and mass to our own Milky Way galaxy, and its nearly face-on orientation shows open spiral arms made of cloudy, irregular patches.
      One noticeable difference between the Milky Way galaxy and NGC 5668 is that this galaxy is forming new stars 60% more quickly. Astronomers have identified two main drivers of star formation in NGC 5668. Firstly, this high-quality Hubble view reveals a bar at the galaxy’s center, though it might look more like a slight oval shape than a real bar. The bar appears to have affected the galaxy’s star formation rate, as central bars do in many spiral galaxies. Secondly, astronomers tracked high-velocity clouds of hydrogen gas moving vertically between the disk of the galaxy and the spherical, faint halo which surrounds it. These movements may be the result of strong stellar winds from hot, massive stars, that would contribute gas to new star-forming regions.
      The enhanced star formation rate in NGC 5668 comes with a corresponding abundance of supernova explosions. Astronomers have spotted three in the galaxy, in 1952, 1954, and 2004. In this image, Hubble examined the surroundings of the Type II SN 2004G, seeking to study the kinds of stars that end their lives as this kind of supernova.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Sep 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Focus: Galaxies through Space and Time


      Hubble Focus: Galaxies through Space and Time


      Hubble Science Highlights



      Name That Nebula


      View the full article
    • By NASA
      5 Min Read NASA’s Webb Peers into the Extreme Outer Galaxy
      This image shows a portion of the star-forming region, known as Digel Cloud 2S (full image below). Credits:
      NASA, ESA, CSA, STScI, M. Ressler (JPL) Astronomers have directed NASA’s James Webb Space Telescope to examine the outskirts of our Milky Way galaxy. Scientists call this region the Extreme Outer Galaxy due to its location more than 58,000 light-years away from the Galactic Center. (For comparison, Earth is approximately 26,000 light-years from the center.)
      A team of scientists used Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to image select regions within two molecular clouds known as Digel Clouds 1 and 2. With its high degree of sensitivity and sharp resolution, the Webb data resolved these areas, which are hosts to star clusters undergoing bursts of star formation, in unprecedented detail. Details of this data include components of the clusters such as very young (Class 0) protostars, outflows and jets, and distinctive nebular structures.
      These Webb observations, which came from telescope time allocated to Mike Ressler of NASA’s Jet Propulsion Laboratory in Southern California, are enabling scientists to study star formation in the outer Milky Way in the same depth of detail as observations of star formation in our own solar neighborhood.
      “In the past, we knew about these star forming regions but were not able to delve into their properties,” said Natsuko Izumi of Gifu University and the National Astronomical Observatory of Japan, lead author of the study. “The Webb data builds upon what we have incrementally gathered over the years from prior observations with different telescopes and observatories. We can get very powerful and impressive images of these clouds with Webb. In the case of Digel Cloud 2, I did not expect to see such active star formation and spectacular jets.”
      Image A: Extreme Outer Galaxy (NIRCam and MIRI)
      Scientists used NASA’s James Webb Space Telescope to examine select star-forming areas in the Extreme Outer Galaxy in near- and mid-infrared light. Within this star-forming region, known as Digel Cloud 2S, the telescope observed young, newly formed stars and their extended jets of material. This Webb image also shows a dense sea of background galaxies and red nebulous structures within the region. In this image, colors were assigned to different filters from Webb’s MIRI and NIRCam: red (F1280W, F770W, F444W), green (F356W, F200W), and blue (F150W; F115W). NASA, ESA, CSA, STScI, M. Ressler (JPL) Stars in the Making
      Although the Digel Clouds are within our galaxy, they are relatively poor in elements heavier than hydrogen and helium. This composition makes them similar to dwarf galaxies and our own Milky Way in its early history. Therefore, the team took the opportunity to use Webb to capture the activity occurring in four clusters of young stars within Digel Clouds 1 and 2: 1A, 1B, 2N, and 2S.
      For Cloud 2S, Webb captured the main cluster containing young, newly formed stars. This dense area is quite active as several stars are emitting extended jets of material along their poles. Additionally, while scientists previously suspected a sub-cluster might be present within the cloud, Webb’s imaging capabilities confirmed its existence for the first time. 
      “We know from studying other nearby star-forming regions that as stars form during their early life phase, they start emitting jets of material at their poles,” said Ressler, second author of the study and principal investigator of the observing program. “What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars. It’s a little bit like a firecracker, where you see things shooting this way and that.”
      The Saga of Stars
      The Webb imagery skims the surface of the Extreme Outer Galaxy and the Digel Clouds, and is just a starting point for the team. They intend to revisit this outpost in the Milky Way to find answers to a variety of current mysteries, including the relative abundance of stars of various masses within Extreme Outer Galaxy star clusters. This measurement can help astronomers understand how a particular environment can influence different types of stars during their formation.
      “I’m interested in continuing to study how star formation is occurring in these regions. By combining data from different observatories and telescopes, we can examine each stage in the evolution process,” said Izumi. “We also plan to investigate circumstellar disks within the Extreme Outer Galaxy. We still don’t know why their lifetimes are shorter than in star-forming regions much closer to us. And of course, I’d like to understand the kinematics of the jets we detected in Cloud 2S.”
      Though the story of star formation is complex and some chapters are still shrouded in mystery, Webb is gathering clues and helping astronomers unravel this intricate tale.
      These findings have been published in the Astronomical Journal.
      The observations were taken as part of Guaranteed Time Observation program 1237.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astronomical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu, Abigail Major – amajor@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Animation Video: “Exploring Star and Planet Formation”
      Interactive: Explore the jets emitted by young stars in multiple wavelengths
      Video: Did You Know: Images of the Milky Way
      Protostars
      Star Lifecycle
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Sep 11, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Protostars Science & Research Star Clusters Star-forming Nebulae Stars The Milky Way The Universe View the full article
    • By USH
      The Colares UFO incidents refer to a series of unusual sightings and encounters that took place in 1977 on the Brazilian island of Colares. During this period, numerous residents from the Amazon River community of Colares reported being attacked by UFOs. 

      These mysterious objects allegedly descended from the sky, and in some cases, emerged from the water, emitting intense beams of light. The beams caused physical harm, including burn marks, puncture wounds, fatigue, and memory loss, affecting as many as 2,000 people. 
      In response to the alarming situation, the Brazilian Air Force initiated a thorough investigation. Years later, their findings were made public, revealing details of this bizarre chapter in UFO history. 
      Weaponized hosts Jeremy and George speak with Thiago Ticchetti, Brazil's leading UFO investigator and author, to discuss the Colares case and the once-classified military files. 
      According to Thiago, the Brazilian military captured remarkably clear film footage and photographs of the UFOs. However, he claims that this evidence was sent to the U.S. and has never been released to the public. 
      In this episode, they also explores various conspiracy theories and recent debunking efforts surrounding the topic of unidentified aerial phenomena (UAP). 
      The discussion on the Colares UFO incidents begins at the 37-minute mark in the video.
        View the full article
  • Check out these Videos

×
×
  • Create New...