Members Can Post Anonymously On This Site
Antarctica’s secret role in interstellar traffic and trade
-
Similar Topics
-
By Space Force
Under Secretary of the Air Force Melissa Dalton visited Vandenberg Space Force Base, Nov. 14, to meet with Guardians and Airmen and gain a better understanding of the base’s diverse missions.
View the full article
-
By NASA
Linda Spuler, emergency manager at NASA’s Johnson Space Center in Houston, believes that everyone has a story. “Our stories highlight what we have in common, but they also make us each unique,” she said.
Spuler has worked at Johnson for over 32 years, spending most of her career in Center Operations. Her story has involved helping to coordinate emergency response teams at Johnson in preparation for natural disasters. “Since Johnson is situated on the coast, a good portion of my job revolves around planning for hurricanes,” she said.
Spuler has dealt with natural disasters at Johnson from Tropical Storm Allison in 2001 to Hurricane Beryl in 2024, but none had a greater personal impact than Hurricane Ike, which wrought havoc in Texas in September 2008. “Participating in the response to Hurricane Ike was a proud moment for me,” she said. “We worked from sunup to sundown restoring the center. Civil servants and contractors from various organizations came together, and for those two weeks, our differences didn’t matter.”
NASA’s Johnson Space Center Emergency Manager Linda Spuler, front, leads an emergency exercise for first responders. Image courtesy of Linda Spuler Spuler believes that NASA’s mission unites everyone – team members, astronauts, and support teams alike. “Remembering why we are all here energizes us and gets us excited about working for NASA,” she said.
Spuler’s journey at NASA began as a dream not originally her own. Her path was shaped by the aspirations of her mother, who was born on an Ojibwe (Chippewa) reservation in Ashland, Wisconsin.
“Although my grandmother lived in Chicago, she returned to the reservation to have her children. My mom is still a voting member of the Bad River Tribe,” said Spuler.
“My mom was studying aerospace engineering at the University of Chicago when she met my dad, a fun-loving electrical engineering major who traced his lineage back to Davy Crockett on his father’s side and Ireland on his mother’s,” said Spuler. “She chose to abandon aerospace to marry my dad, whose degree and love for space brought him to work at Johnson.”
Linda Spuler accepts the Thirty-Year Service Award from Johnson Director Vanessa Wyche to commemorate her service at NASA. NASA/David DeHoyos Spuler said her mother was very proud that her father worked for NASA. “She was very happy when I chose to work here, too,” she said. “She taught me the value and reward of working hard. My mom is proud of her heritage but she is cautious of sharing her story.”
Linda Spuler at an Easter egg hunt at NASA’s Johnson Space Center in 1971. Image courtesy of Linda Spuler Spuler enjoys learning about Ojibwe culture from her mother. “Every Thanksgiving, we enjoy wild rice from the Bad River sent from the “aunties” that still live on the reservation,” Spuler shared. She also represents her culture and pride through her work, honoring the legacy of those who came before her and sharing the story of her mother, her father, and now herself.
Linda Spuler receives the 2019 Furlough Heroes Awards alongside her son, Logan. NASA/James Blair “I celebrate the unique story that makes me part Ojibwe, part Polish, part Texas revolutionary, part Irish, part English, and all me,” she said.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Expedition 64 Flight Engineer Victor Glover of NASA sips on a water bag. The latest book marks our third effort to review available literature regarding the role of nutrition in astronaut health. In 2009, we reviewed the existing knowledge and history of human nutrition for spaceflight, with a key goal of identifying additional data that would be required before NASA could confidently reduce the risk of an inadequate food system or inadequate nutrition to as low as possible in support of human expeditions to the Moon or Mars. We used a nutrient-by-nutrient approach to address this effort, and we included a brief description of the space food systems during historical space programs.
In 2014, we published a second volume of the book, which was not so much a second edition, but rather a view of space nutrition from a different perspective. This volume updated research that had been published in the intervening 6 years and addressed space nutrition with a more physiological systems-based approach.
The current version is an expanded, updated version of that second book, providing both a systems approach overall, but also including details of nutrients and their roles within each system. As such, this book is divided into chapters based on physiological systems (e.g., bone, muscle, ocular); highlighted in each chapter are the nutrients associated with that particular system. We provide updated information on space food
systems and constraints of the same, and provide dietary intake data from International Space Station (ISS) astronauts.
We present data from ground-based analog studies, designed to mimic one or more conditions similar to those produced by spaceflight. Head-down tilt bed rest is a common analog of the general (and specifically musculoskeletal) disuse of spaceflight. Nutrition research from Antarctica relies on the associated confinement
and isolation, in addition to the lack of sunlight exposure during the winter months. Undersea habitats help expand our understanding of nutritional changes in a confined space with a hyperbaric atmosphere. We also review spaceflight research, including data from now “historical” flights on the Space Shuttle, data from the Russian space station Mir, and earlier space programs such as Apollo and Skylab. The ISS, now more than
20 years old, has provided (and continues to provide) a wealth of nutrition findings from extended-duration spaceflights of 4 to 12 months. We review findings from this platform as well, providing a comprehensive review of what is known regarding the role of human nutrition in keeping astronauts healthy.
With this latest book, we hope we have accurately captured the current state of the field of space food and nutrition, and that we have provided some guideposts for work that remains to be done to enable safe and successful human exploration beyond low-Earth orbit.
Human Adaptation to Spaceflight: The Role of Food and Nutrition – 2nd Edition
Download 2nd Edition PDF
Human Adaptation to Spaceflight: The Role of Food and Nutrition – 1st Edition
Download 1st Edition PDF
Education and Outreach Share
Details
Last Updated Oct 23, 2024 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Jhony Zavaleta, ASIA-AQ Project Manager, welcomes DC-8 Navigator Walter Klein and the rest of the aircraft crew to U-Tapao, Thailand for its initial arrival to the country during the ASIA-AQ campaign. Erin Czech (back, blue shirt) and Jaden Ta (front, black pants) served as part of the Thailand ESPO site management team, while Zavaleta and Sam Kim (far right) worked as the ESPO advance team to prepare each new site for the mission’s arrival. NASA Ames/Rafael Luis Méndez Peña ESPO solves problems before you know you have them. If you are missing a canister of liquid nitrogen, got locked out of your rental car, or need clearance for a South Korean military base, you want ESPO in your corner.
What is ESPO?
While the Earth Science Project Office (ESPO) does many things, one of the team’s primary responsibilities is providing project management for many of the largest and most complex airborne campaigns across NASA’s Earth Science Division.
Some of these missions are domestic, such as the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE). S-MODE deployed three separate field campaigns from 2021-2023, using planes, drones, marine robotics, and research vessels to study ocean eddies and sub-surface dynamics. NASA Ames Research Center, located in Northern California, served as S-MODE’s control center and the base for two of the three deployed aircraft.
Erin Czech (far left) stands with Jacob Soboroff and the Today Show crew, members of the NASA Ames Public Affairs Office, researchers from the Jet Propulsion Laboratory (JPL), and the NASA Langley G-III air crew during S-MODE’s 2023 deployment. Courtesy of Jacob Soboroff
ESPO also provides project management for many international missions, such as the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ), which deployed in January, 2024 out of South Korea, Thailand, and the Philippines. The campaign used satellites, aircraft, and ground-based sensors to study air quality across Asia, as part of a global effort to better understand the factors that contribute to air quality.
Despite the critical nature of ESPO’s work, they’ll be the first to tell you that their goal is to remain behind the scenes. “Our mission statement is essentially to let the scientists concentrate on science,” said Erin Czech, Assistant Branch Chief of ESPO. “Our team’s job is to stay in the background. We don’t really advertise all the things we do, the pieces we put together, the crises we solve, because we don’t want folks to have to be in the weeds with us. We’ll take care of it.”
Making the invisible, visible: What does this look like in practice?
Before a deployment:
Project management for major airborne campaigns begins long before a deployment. The team begins by helping establish a mission framework, such as getting a budget in place, settling grants and funding with partner universities and agencies, and performing site visits.
“We are not scientists,” Czech said, “it’s the job of the Principal Investigator to mission plan. Our job is to evaluate risk, set up contingency plans, and help make sure all the different groups are talking to each other. We work with world-class scientists, who are going to come up with an awesome plan; we just want to do whatever we need to in order to support them.”
We work with world-class scientists, who are going to come up with an awesome plan; we just want to do whatever we need to in order to support them.
Erin Czech
ESPO Assistant Branch Chief
As the deployment date draws closer, the team nails down logistics: deciding how and where to ship equipment, reserving hotel blocks for researchers, acquiring diplomatic clearances, running planning meetings between agencies, and so much more.
This process is particularly complicated for multi-site, international missions like ASIA-AQ, which required multiple visits to each country before the actual deployment. “We looked at many locations in each country on the first scouting trip, to help figure out deployment sites,” said Jhony Zavaleta, Deputy Director for ESPO and Project Manager for ASIA-AQ. “The second scouting trip was to evaluate modifications promised during the first trip, such as upgrades to infrastructure, and to figure out hotels, transit options, specific facilities for mission operations, that sort of thing.”
According to Zavaleta, another purpose of these advance trips was to put pieces in place with partner organizations – such as civilian aviation authorities, foreign science ministries, or military operations – so that when NASA officially requested diplomatic clearance to run the airborne campaigns, the groundwork had already been laid.
Then it’s go time.
During the deployment:
As the deployment gets underway, ESPO keeps the flurry of activity running as smoothly as possible.
“During a deployment, you’re working all day every day,” said Czech, who is also the Project Manager for S-MODE. “But really that’s the whole mission team. When you’re on a NASA project, the whole team is incredibly dedicated and working like crazy, because everybody’s on the same page to make the most out of this investment, and take advantage of any kind of science opportunity that presents itself day to day.”
For Zavaleta, day-to-day operations meant escorting personnel onto military bases, tracking down liquid nitrogen, coordinating media days with local news outlets, setting up satellite communications, arranging transportation between sites, and preparing the next location. “I was on the ESPO advance team, which would set up one location, overlap with the ESPO site management team for about a week, then head to the next,” Zavaleta recalled. “Our teams would leapfrog; we were always managing site logistics, but also always preparing and setting up for the next spot.”
(From left) Stevie Phothisane, Vidal Salazar, and Daisy Gonzalez, the ESPO site management team for the Philippines during ASIA-AQ, sit at Clark International Airport coordinating daily operations support while the aircraft was in flight.NASA Ames/Rafael Luis Méndez Peña
Beyond the day-to-day operations, ESPO also steps in when major issues arise. According to Czech, they can usually expect one or two big wrenches to come up for any major mission.
For S-MODE, the first wrench came in the form of a global pandemic. “The original deployment was set for April, 2020,” Czech said. “Everything was shutting down, and we had just set everything up: ship, aircraft, everything. In fact, we set everything up two more times before we ultimately got to do our first deployment, in October of 2021.”
The second major wrench happened when four months before the actual launch, the research vessel the mission was planned around backed out. From there, Czech said it was a mad scramble to find a suitable replacement vessel that was already on the West Coast, and to build out the on-board infrastructure to meet the mission requirements.
The R/V (Research Vessel) Oceanus sits docked in Newport, Oregon during S-MODE ship mobilization. The Oceanus was one of three research vessels that deployed throughout the mission. NASA Ames/Sommer Nicholas
“The key is just to always be on the lookout for issues, keep agile, and don’t get too frustrated if things don’t go your way,” Czech said. “It is what it is. Some major issue comes up on every big mission: you’ve just got to figure out how to deal with it, then move on.”
After the deployment:
After a field deployment is finished, there are still years of work to do – for the scientists and for ESPO.
The final S-MODE field deployment concluded in Spring of 2023. While the science team has been processing data and analyzing results, ESPO’s role has been to organize annual science team meetings, track publications tied to the mission, and help compile a final report to be presented in Washington DC when the mission officially wraps in May of 2025.
Researchers Kayli Matsuyoshi, Luke Colosi and Luc Lenain in the Air-Sea Interaction Laboratory at SIO discussing the latest S-MODE findings. Courtesy of Nick Pizzo For ASIA-AQ, whose deployment wrapped up in March of 2024, ESPO’s first task was getting all equipment and personnel back to their respective home bases. Next up, Zavaleta and his team are coordinating a science team meeting in Malaysia in January of 2025, and supporting the scientists as they put together a preliminary research report for later that spring.
Knowledge and Expertise
While logistical skills and communication brokering are important pieces of ESPO’s role, knowledge may be the group’s most important asset. “In many ways, our value to NASA lies in the fact that we’ve been doing this a long time,” Czech said. “Our first mission was in 1987, and we’ve run over 60 campaigns since then; we have a lot of institutional knowledge that gets passed down, and a lot of experience between our team members. That expertise is a large part of our value to the agency.”
To access the data from S-MODE, visit the Physical Oceanography Distributed Active Archive Center (PO.DAAC)
About the Author
Milan Loiacono
Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
Share
Details
Last Updated Oct 18, 2024 Related Terms
General Earth Science Earth Science Division Explore More
5 min read What is Air Quality?
Article 13 hours ago 4 min read Scientist Profile: Jacquelyn Shuman Blazes New Trails in Fire Science
Article 1 day ago 4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Urban air mobility means a safe and efficient system for vehicles, piloted or not, to move passengers and cargo within a city.NASA As the aviation industry evolves, new air vehicles and operators are entering the airspace. NASA is working to ensure these new diverse set of operations can be safely integrated into the current airspace. The agency is researching how traditional and emerging aircraft operations can efficiently operate in a shared airspace.
NASA’s Air Traffic Management-eXploration (ATM-X) project is a holistic approach to advancing a digital aviation ecosystem through research, development and testing. To accommodate the growing complexity and scale of new operations in Advanced Air Mobility (AAM), ATM-X leverages technologies that contribute to transforming the national airspace, improving airspace access, and making operations safer and more efficient for all users.
ATM-X fosters access to data by enhancing the availability of digital information and predictive services – including flight traffic predictions – for airspace operations.
ATM-X works closely with the Federal Aviation Administration (FAA), commercial partners, industry experts, and stakeholders in evaluating the sustainable impacts of emerging mobility solutions. ATM-X is conducting research to augment current key stakeholders that enable safe operations today such as pilots and air traffic controllers. Through these cooperations, ATM-X researches and validates technological advances in computing, communications, and increasingly automated technologies to support the continued evolution of aviation operations.
ATM-X supports the modernization of today’s air transportation system through a diverse portfolio of core capabilities, which include remotely supervised missions up through high-altitude operations. The four research subprojects under ATM-X work collaboratively to enable a robust transformation of the National Airspace System (NAS).
NASA/Maria Werries Unmanned Aircraft System Traffic Management Beyond-Visual-Line-of Sight (UTM-BVLOS)
UTM BVLOS is supporting the future of aviation by operationalizing UTM for safe use of drones in our everyday lives. UTM BVLOS is part of a new traffic management paradigm called Extensible Traffic Management (xTM) that will use digital information exchange, cooperative operating practices, and automation to provide air traffic management for remotely piloted operations for small UAS beyond an operator’s visual line of sight. This project focuses on enabling operations in a low- altitude airspace, including drone package delivery and public safety operations.
As the FAA works to authorize these types of flights, NASA’s UTM BVLOS team is working with industry to ensure these operations can be routine, safe, and efficient. One such effort is the industry-driven “Key Site Operational Evaluation” out of North Texas, where UTM BVLOS is helping to test UTM tools and services in an operational context.
Digital Information Platform (DIP)
DIP is focused on increasing access to digital information to enable increasingly sustainable and efficient operations for today and future airspace systems. DIP is prototyping a digital service-oriented framework that uses machine learning to provide information, including traffic predictions, weather information, and in-time flight trajectory updates. DIP tests and validates key services for end-to-end trajectory planning and surface operations.
DIP is engaging with the FAA, industry, flight operators, and relevant stakeholders, in a series of Sustainable Flight National Partnership – Operations demonstrations to support the United States Climate Action Plan objective of net-zero emissions by 2050. Through these types of collaborations, DIP tests and validates key services and capabilities for end-to-end trajectory planning and surface operations.
Pathfinding for Airspace with Autonomous Vehicles (PAAV)
PAAV is focused on enabling remotely piloted operations in today’s airspace, which includes assessing increasingly automated capabilities to allow safe operations across all phases of flight.
PAAV is working with key stakeholders, including the FAA, industry standards organizations, and industry partners to develop an ecosystem which helps validate standards, concepts, procedures, and technology. This research will help test and validate a broad range of tools and services that could provide critical information and functions necessary for remotely piloted operations at lower complexity airspace shared with conventional aircrafts. This includes ground-based surveillance to detect and avoid hazards, command and control communications, and relevant weather information, which is critical for safe, seamless, and scalable UAS cargo operations.
NAS Exploratory Concepts & Technologies (NExCT)
Advancements in aircraft design, power, and propulsion systems are enabling high-altitude long-endurance vehicles, such as balloons, airships, and solar aircraft to operate at altitudes of 60,000 feet and above. This airspace is referred to as “Upper Class E” airspace in the United States, or ETM. These advancements open doors to benefits ranging from increased internet coverage, improved disaster response, expanded scientific missions, to even supersonic flight. To accommodate and foster this growth, NExCT is developing a new traffic management concept in this airspace.
NExCT is working with the FAA and industry partners to extend a new concept for safely integrating and scaling air traffic across UTM, UAM, and ETM, collectively referenced as the Extensible Traffic Management (xTM) domain. Together, this research project will enable, test, and validate a common xTM framework that is efficient and safe.
ATM-X
AOSP
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests
Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators
Article 2 weeks ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Solar System Overview The solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
Explore NASA’s History
Share
Details
Last Updated Sep 11, 2024 EditorJim BankeContactHillary Smithhillary.smith@nasa.gov Related Terms
Aeronautics Research Mission Directorate Air Traffic Management – Exploration View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.