Jump to content

Recommended Posts

Posted
The Department of Defense has appointed a new director to lead the AARO (All-domain Anomaly Resolution Office), which is responsible for investigating UFOs and UAPs. The choice of Dr. Jon T. Kosloski, a former NSA scientist, is notable. According to USAF whistleblower Dan Sherman, the NSA has been involved in tracking UFO and non-human intelligence (NHI) activity for decades. Additionally, there are claims that the NSA manages interstellar trade operations from a base in Antarctica. 

whistleblower%20%20antarctica%20secret%20base%20interstellar%20craft.jpg

Kosloski replaces Dr. Sean Kirkpatrick, the inaugural director of AARO, who faced criticism during his tenure. Many believed Kirkpatrick did little to support whistleblowers, hindering efforts to reveal critical information about UFOs and related phenomena. 

One of the intriguing aspects of this story is the alleged NSA connection to Antarctica. 

Eric Hecker a Raytheon contractor who worked at the Ice Cube Neutrino observatory at Antarctica from 2010-2011 said that this observatory constructed at the Amundsen–Scott South Pole Station in Antarctica is a huge air traffic control power station that monitors all interstellar craft that be operated by humans as well as non-humans. 

The observatory is not the only station that tracks interstellar craft, reports from whistleblowers over the years have hinted at the presence of a vast underground military complex in the area. Allegedly, the NSA operates an office there, which also is involved in monitoring interstellar activity, possibly utilizing the Ice Cube Neutrino Observatory's facilities. In addition, this office is reportedly engaged in interstellar trade. According to Navy whistleblowers, the office is managed from the NSA headquarters at Fort Meade, Maryland, specifically on the sixth floor. 

It may sound fantastical, but the NSA has been tracking UFO activity since its inception in 1952. The agency is believed to have developed capabilities to detect UFOs anywhere on Earth but keep quiet about it. 

Now, as we look to the future, institutions that shape national security believe the U.S. needs to prepare the public for disclosure, as humanity's future may lie in space. Advanced propulsion systems, including anti-gravity and torsion field technologies, are being developed to construct fleets of spacecraft that can keep pace with extraterrestrial civilizations. 

Furthermore, there is a large spaceport in Alabama, near the caverns around Huntsville, where pilots from around 30 nations are reportedly being trained to fly interstellar craft  under supervision of a group of extraterrestrials known as the Nordics. It is said that this underground facility already houses hundreds of these craft.

Despite the ongoing UFO cover-up, with Dr. Kosloski now leading AARO, there is hope that in particular the NSA’s involvement in these operations will become more transparent and that further revelations may follow.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA, along with members of the FAA and commercial drone engineers, gathered in the Dallas area May 25, 2024, to view multiple delivery drones operating in a shared airspace beyond visual line of sight using an industry-developed, NASA-originated uncrewed aircraft system traffic management system.NASA NASA’s Uncrewed Aircraft Systems Traffic Management Beyond Visual Line of Sight (UTM BVLOS) subproject aims to support the growing demand for drone flights across the globe.  
      Uncrewed aircraft systems (UAS), or drones, offer an increasing number of services, from package delivery to critical public safety operations, like search and rescue missions. However, without special waivers, these flights are currently limited to visual line of sight – or only as far as the pilot can see – which is roughly no farther than one mile from the operator. As the FAA works to authorize flights beyond this point, NASA is working with industry and the Federal Aviation Administration (FAA) to operationalize an uncrewed traffic management system for these operations.  
      NASA’s UTM Legacy  
      NASA’s Uncrewed Aircraft Systems Traffic Management, or UTM, was first developed at NASA’s Ames Research Center in California’s Silicon Valley in 2013, and enables drones to safely and efficiently integrate into air traffic that is already flying in low-altitude airspace. UTM is based on digital sharing of each user’s planned flight details, ensuring each user has the same situational awareness of the airspace. 
      NASA performed a series of drone flight demonstrations using UTM concepts in rural areas and densely populated cities under the agency’s previous UTM project . And commercial drone companies have since utilized NASA’s UTM concepts and delivery operations in limited areas.  
      Several projects supporting NASA’s Advanced Air Mobility or AAM mission are working on different elements to help make AAM a reality and one of these research areas is automation.NASA / Graphics UTM Today 
      NASA research is a driving force in making routine drone deliveries a reality. The agency is supporting a series of commercial drone package deliveries beyond visual line of sight, some of which kicked off in August 2024 in Dallas, Texas. Commercial operators are using NASA’s UTM-based capabilities during these flights to share data and planned flight routes with other operators in the airspace, detect and avoid hazards, and maintain situational awareness. All of these capabilities allow operators to safely execute their operations in a shared airspace below 400 feet and away from crewed aircraft. These drone operations in Dallas are a collaboration between NASA, the FAA, industry drone operators, public safety operators, and others. 
      These initial flights will help validate UTM capabilities through successful flight operation evaluations and inform the FAA’s rulemaking for safely expanding drone operations beyond visual line of sight. 
      The agency will continue to work with industry and government partners on more complex drone operations in communities across the country. NASA is also working with partners to leverage UTM for other emerging operations, including remotely piloted air cargo delivery and air taxi flights. UTM infrastructure could also support high-altitude operations for expanded scientific research, improved disaster response, and more. 
      NASA UTM BVLOS 
      NASA’s UTM Beyond Visual Line of Site (UTM BVLOS) subproject is leading this effort, under the Air Traffic Management eXploration portfolio within the agency’s Aeronautics Research Mission Directorate. This work is in support of NASA’s Advanced Air Mobility Mission, which seeks to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Many team members at NASA’s Johnson Space Center in Houston may recognize Alicia Baker as the talented flutist in the Hispanic Employee Resource Group’s Mariachi Celestial band. Or, they may have worked with Baker in her role as a spacesuit project manager, testing NASA’s prototype spacesuits and preparing Johnson’s test chambers to evaluate vendor spacesuits.

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos They might be surprised to learn that Baker juggled these responsibilities and more while also caring for her late husband, Chris, as he fought a terminal illness for 16 years.

      “It was hard taking care of a loved one with cancer and working full-time,” Baker said. “My husband was also disabled from a brain tumor surgery, so I had to help him with reading, writing, walking, and remembering, while managing the household.”

      Baker worked closely with her manager to coordinate schedules and get approval to telework so that she could work around her husband’s medical appointments and procedures. She also took medical leave when her husband entered hospice care in 2020. Baker said her manager’s flexibility “saved her job” and allowed her to continue providing for her family. She was even able to advance from project engineer to test director to project manager during this time period.

      Alicia Baker and her husband Chris on their wedding day. Image courtesy of Alicia Baker Baker is one of the many Johnson employees who are or have been a caregiver for a loved one. These caregivers provide help to a person in need who often has a medical condition or injury that affects their daily functioning. Their needs may be temporary or long-term, and they could be physical, medical, financial, or domestic in nature.

      Recognizing the challenging and critical role caregivers play in their families, the Johnson community provides a variety of resources to support team members through the Employee Assistance Program. Additionally, Johnson’s No Boundaries Employee Resource Group (NoBo) supports caregivers through its programs and initiatives.

      Baker participates in both the support group and NoBo activities and takes comfort in sharing her and her husband’s story with others. “I would do it all over again,” she said of her caregiver role.

      Now she looks forward to future missions to the Moon, when NASA astronauts will conduct spacewalks on the lunar surface while wearing new spacesuits. “Then I can say I helped make that possible!” Throughout all of her experiences, Baker has learned to never give up. “If you have a dream, keep fighting for it,” she said.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The focus of Airspace Technology Demonstration 2 was IADS, a software that coordinates flight schedules between the ramp, tower, terminal, and center control facilities. This visual representation of data helps minimize delays on the ground.NASA / Jim Banke If every commuter drove the same few roads at the same time every day, the traffic would be unbearable. That’s exactly what’s happening in the skies above the nation, known as national airspace (NAS). Multiple flights from different airlines try to use the most direct flight paths, converging on the same airports. With limited runway space, that causes jumbo-sized traffic congestion.  

      “The majority of uncertainty in the NAS can be attributed to surface operations, and in particular, uncertainty related to when a flight will be available to push back from the gate,” said Jeremy Coupe of NASA’s Ames Research Center in Silicon Valley, California. To help develop a solution, NASA Ames focused on how to improve managing traffic on the ground and scheduling departures. 

      Holding airplanes at the gate until just before takeoff allows them to run on power supplied by the airport. American Airlines saved millions of gallons of fuel and maintenance costs and tons of harmful emissions by only running engines when arriving at and leaving the gate.NASA Working with the Federal Aviation Administration (FAA), commercial airlines, and airports, NASA developed and tested a new program to manage airport traffic on the ground – the Integrated Arrival, Departure, and Surface (IADS) system. In 2022, the FAA began incorporating this system’s capabilities at 27 of the busiest airports in the country. 

      Just as a traffic officer can prevent gridlock at a busy intersection, IADS is designed to prevent similar traffic tangles. The first test site for the program development was Charlotte Douglas International Airport in North Carolina, the second-busiest airport on the East Coast with only three runways. About 75% of those are connecting flights. 

      Before IADS, one challenge the airport faced was a technology mismatch – the airport’s control tower used one software program and ground management used a different one, with no way to integrate them. A phone call was the most common way to notify each other about changes or problems. With approximately 115 aircraft on the ground at any time, a delay in communication could create complications. A plane leaving the gate before being notified of a delay could result in several planes waiting in line at the runway. 

      “Knowing that you’re going to get where you need to go when the airline says it’s going to deliver you is what people stress about when they’re traveling, especially if they’re trying to make connections in an airport like Charlotte,” said Lee Davis, communications director for the airport. Many factors, including weather, influence timeliness, but making ground operations run predictably is fundamental. 

      With near real-time data related to on-time departures and delays, airlines can actively address issues related to connections for crew, customers, and cargo. Whether it’s in space or the skies above, NASA innovations continue to make travel more efficient.   
      Read More Share
      Details
      Last Updated Nov 27, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Super Insulation Requires Super Materials 
      NASA researchers helped create an insulation coating that blocks heat and sunlight
      Article 1 week ago 2 min read From Mars Rovers to Factory Assembly Lines
      NASA-funded AI technology enabling autonomous rovers and drones now keeps an eye on conveyor belts
      Article 4 weeks ago 2 min read The View from Space Keeps Getting Better  
      After 50 years of Landsat, discovery of new commercial and scientific uses is only accelerating
      Article 1 month ago Keep Exploring Discover Related Topics
      Aeronautics
      Air Traffic Management Research
      Ames Research Center
      Missions
      View the full article
    • By NASA
      As any urban dweller who has lived through a heat wave knows, a shady tree can make all the difference. But what happens when there’s no shade available?
      A recent study in Nature Communications used NASA satellite data to identify a major gap in global resilience to climate change: cities in the Global South have far less green space — and therefore less cooling capacity — than cities in the Global North. The terms Global North and Global South were used in the study to distinguish developed countries (mostly in the Northern Hemisphere) from developing nations (mostly in the Southern Hemisphere).
      Cities tend to be hotter than nearby rural areas because of the urban heat island effect. Heat-trapping dark surfaces such as sidewalks, buildings, and roads absorb heat from the Sun’s rays, which raises the temperature of the city. Extreme heat poses serious health threats for urban residents, including dehydration, heat stroke, and even death. Though not a cure-all, greenery provides shade and releases moisture into the air, cooling the surroundings.
      “Cities can strategically prioritize developing new green spaces in areas that have less green space,” said Christian Braneon, a climate scientist at NASA’s Goddard Institute for Space Studies in New York who was not affiliated with this study. “Satellite data can be really helpful for this.”
      The Operational Land Imager (OLI) on the NASA and U.S. Geological Survey’s Landsat 8 satellite captured this natural color image of Sanaa, Yemen, on June 8, 2024. Sanaa, which has a hot, dry climate and little green space, had the second-lowest cooling capacity of 500 cities studied in a paper recently published in the journal Nature Communications. Wanmei Liang, NASA Earth Observatory An international team of researchers led by Yuxiang Li, a doctoral student at Nanjing University, analyzed the 500 largest cities in the world to compare their cooling capacities. They used data from the Landsat 8 satellite, jointly managed by NASA and the U.S. Geological Survey, to determine how effective green space was at cooling each city.
      First, they calculated the average land surface temperature for the hottest month of 2018 for each city, as well as the average of the hottest months from 2017 to 2019. Next, the researchers used a metric called the Normalized Difference Vegetation Index (NDVI) to map how much green space each city had. The NDVI relies on the fact that healthy vegetation absorbs red light and reflects infrared light: the ratio of these wavelengths can show the density of healthy vegetation in a given satellite image.
      Researchers found that cities in the Global South have just 70% of the greenery-related cooling capacity of cities in the Global North. The green spaces in an average Global South city cool the temperature by about 4.5 F (2.5 C). In an average Global North city, that cooling capacity is 6.5 F (3.6 C). This compounds an existing problem: cities in the South tend to be at lower latitudes (that is, nearer to the Equator), which are predicted to see more heat extremes in the coming years.
      “It’s already clear that Global South countries will be impacted by heat waves, rising temperatures, and climatic extremes more than their Global North counterparts,” said Chi Xu, a professor of ecology at Nanjing University and a co-author of the study. The Global South has less capacity to adapt to heat because air conditioning is less common and power outages are more frequent.
      Why do cities in the Global South struggle to stay cool? Cities in the Global South tend to have less green space than cities in the Global North. This mirrors studies of the disparities within cities, sometimes referred to as the “luxury effect”: wealthier neighborhoods tend to have more green space than poorer neighborhoods. “Wealthier cities also have more urban green spaces than the poorest cities,” Chi said.
      It’s unlikely that urban planners can close the gap between the study’s worst-performing city (Mogadishu, Somalia) and the best-performing one (Charlotte, North Carolina).
      Mogadishu is a dense city with a dry climate that limits vegetation growth. Still, there’s a lot that each city can learn from its neighbors. Within a given region, the researchers identified the city with the greatest cooling capacity and used that as a goal. They calculated the difference between the best-performing city in the region and every city nearby to get the potential additional cooling capacity. They found that cities’ average cooling capacity could be increased substantially — to as much as 18 F (10 C) — by systematically increasing green space quantity and quality.
      “How you utilize green space is really going to vary depending on the climate and the urban environment you’re focused on,” said Braneon, whose research at NASA focuses on climate change and urban planning.
      Greener cities in the U.S. and Canada have lower population densities. However, fewer people per square mile isn’t necessarily good for the environment: residents in low-density cities rely more on cars, and their houses tend to be bigger and less efficient. Braneon noted that there’s a suite of solutions beyond just planting trees or designating parks: Cities can increase cooling capacity by creating water bodies, seeding green roofs, and painting roofs or pavement lighter colors to reflect more light.
      With a global study like this, urban planners can compare strategies for cities within the same region or with similar densities. “For newly urbanized areas that aren’t completely built out, there’s a lot of room to still change the design,” Braneon said.
      By Madeleine Gregory
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 26, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Climate Change Earth Goddard Institute for Space Studies Goddard Space Flight Center Landsat Landsat 8 / LDCM (Landsat Data Continuity Mission) View the full article
    • By Space Force
      Under Secretary of the Air Force Melissa Dalton visited Vandenberg Space Force Base, Nov. 14, to meet with Guardians and Airmen and gain a better understanding of the base’s diverse missions.

      View the full article
  • Check out these Videos

×
×
  • Create New...