Jump to content

NASA’s Boeing Crew Flight Test Undocking


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      Credits:
      NASA/Trevor Graff/Robert Markowitz Black and gray sediment stretches as far as the eye can see. Boulders sit on top of ground devoid of vegetation. Humans appear almost miniature in scale against a swath of shadowy mountains. At first glance, it seems a perfect scene from an excursion on the Moon’s surface … except the people are in hiking gear, not spacesuits.
      Iceland has served as a lunar stand-in for training NASA astronauts since the days of the Apollo missions, and this summer the Artemis II crew took its place in that long history. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, along with their backups, NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons, joined geology experts for field training on the Nordic island.
      NASA astronaut and Artemis II mission specialist Christina Koch stands in the desolate landscape of Iceland during a geology field training course. NASA/Robert Markowitz NASA/Robert Markowitz “Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training,” said Cindy Evans, Artemis geology training lead at NASA’s Johnson Space Center in Houston. “It has lunar-like planetary processes – in this case, volcanism. It has the landscape; it looks like the Moon. And it has the scale of features astronauts will both be observing and exploring on the Moon.”
      Iceland’s geology, like the Moon’s, includes rocks called basalts and breccias. Basalts are dark, fine-grained, iron-rich rocks that form when volcanic magma cools and crystalizes quickly. In Iceland, basalt lavas form from volcanoes and deep fissures. On the Moon, basalts can form from both volcanoes and lava pooling in impact basins. Breccias are angular fragments of rock that are fused together to create new rocks. In Iceland, volcanic breccias are formed from explosive volcanic eruptions and on the Moon, impact breccias are formed from meteoroids impacting the lunar surface.
      Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training.
      Cindy Evans
      Artemis Geology Training Lead
      Along with exploring the geology of Iceland, the astronauts practiced navigation and expeditionary skills to prepare them for living and working together, and gave feedback to instructors, who used this as an opportunity to hone their instruction and identify sites for future Artemis crew training. They also put tools to the test, learning to use hammers, scoops, and chisels to collect rock samples.
      Caption: The Artemis II crew, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, and backup crew members NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons trek across the Icelandic landscape during their field geology training. NASA/Robert Markowitz “The tools we used during the Apollo missions haven’t changed that much for what we’re planning for the Artemis missions,” said Trevor Graff, exploration geologist and the hardware and testing lead on the Artemis science team at NASA Johnson. “Traditionally, a geologist goes out with just standard tool sets of things like rock hammers and scoops or shovels to sample the world around them, both on the surface and subsurface.”
      The Artemis tools have a bit of a twist from traditional terrestrial geology tools, though. Engineers must take into consideration limited mass availability during launch, how easy it is to use a tool while wearing pressurized gloves, and how to ensure the pristine nature of the lunar samples is preserved for study back on Earth.
      There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface.
      Angela Garcia
      Exploration Geologist and Artemis II Science Officer
      Caption: Angela Garcia, Artemis II science officer and exploration geologist, demonstrates how to use a rock hammer and chisel to dislodge a rock sample from a large boulder during the Artemis II field geology training in Iceland. NASA/Robert Markowitz “There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface,” said Angela Garcia, exploration geologist and an Artemis II science officer at NASA Johnson.
      The Artemis II test flight will be NASA’s first mission with crew under Artemis and will pave the way to land the first woman, first person of color, and first international partner astronaut on the Moon on future missions. The crew will travel approximately 4,600 miles beyond the far side of the Moon. While the Artemis II astronauts will not land on the surface of the Moon, the geology fundamentals they develop during field training will be critical to meeting the science objectives of their mission.
      These objectives include visually studying a list of surface features, such as craters, from orbit. Astronauts will snap photos of the features, and describe their color, reflectivity, and texture — details that can reveal their geologic history.
      The Artemis II crew astronauts, their backups, and the geology training field team pose in a valley in Iceland’s Vatnajökull national park. From front left: Angela Garcia, Jacob Richardson, Cindy Evans, Jenni Gibbons, Jacki Mahaffey, back row from left: Jeremy Hansen, John Ramsey, Reid Wiseman, Ron Spencer, Scott Wray, Kelsey Young, Patrick Whelley, Christina Koch, Andre Douglas, Jacki Kagey, Victor Glover, Rick Rochelle (NOLS), Trevor Graff. “Having humans hold the camera during a lunar pass and describe what they’re seeing in language that scientists can understand is a boon for science,” said Kelsey Young, lunar science lead for Artemis II and Artemis II science officer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In large part, that’s what we’re training astronauts to do when we take them to these Moon-like environments on Earth.”

      Read More

      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Analog Field Testing Andre Douglas Apollo Artemis Astronauts Christina H. Koch Earth’s Moon G. Reid Wiseman Humans in Space Missions The Solar System Victor J. Glover Explore More
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 hours ago
      5 min read NASA’s Webb Peers into the Extreme Outer Galaxy


      Article


      1 day ago
      23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Astromaterials



      Humans In Space



      Our Solar System



      Artemis Science


      A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…

      View the full article
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By NASA
      On Sept. 9, 1994, space shuttle Discovery took to the skies on its 19th trip into space. During their 11-day mission, the STS-64 crew of Commander Richard “Dick” N. Richards, Pilot L. Blaine Hammond, and Mission Specialists Jerry M. Linenger, Susan J. Helms, Carl J. Meade, and Mark C. Lee demonstrated many of the space shuttle’s capabilities. They used a laser instrument to observe the Earth’s atmosphere, deployed and retrieved a science satellite, and used the shuttle’s robotic arm for a variety of tasks, including studying the orbiter itself. During a spacewalk, Lee and Meade tested a new device to rescue astronauts who found themselves detached from the vehicle. Astronauts today use the device routinely for spacewalks from the International Space Station.

      Left: The STS-64 crew patch. Middle: Official photo of the STS-64 crew of L. Blaine Hammond, front row left, Richard “Dick” N. Richards, and Susan J. Helms; Mark C. Lee, back row left, Jerry M. Linenger, and Carl J. Meade. Right: The patch for the Lidar In-space Technology Experiment.
      In November 1993, NASA announced the five-person all-veteran STS-64 crew. Richards, selected as an astronaut in 1980, had made three previous spaceflights, STS-28, STS-41, and STS-50. Lee, a member of the astronaut class of 1984, had two flights to his credit, STS-30 and STS-47, as did Meade, selected in 1985 and a veteran of STS-38 and STS-50. Each making their second trip into space, Hammond, selected in 1984 had flown on STS-39, and Helms, from the class of 1990 had flown on STS-54. In February 1994, NASA added first time space flyer Linenger to the crew, partly to make him eligible for a flight to Mir. He holds the distinction as the first member of his astronaut class of 1992 to fly in space.

      Left: Workers tow Discovery from the Orbiter Processing Facility to the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A. Right: The STS-64 crew exits crew quarters at KSC on their way to the launch.
      Discovery returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, the STS-60 mission, in February 1994. Workers in KSC’s Orbiter Processing Facility (OPF) removed the previous payload and began to service the orbiter. On May 26, workers moved Discovery into the Vehicle Assembly Building for temporary storage to make room in the OPF for Atlantis, just returned from Palmdale, California, where it underwent modifications to enable extended duration flights and dockings with space stations. Discovery returned to the OPF for payload installation in July, and rolled back to the VAB on Aug. 11 for mating with its external tank and solid rocket boosters. Discovery rolled out to Launch Pad 39B on Aug. 19, with its sister ship Endeavour still on Launch Pad 39A following the previous day’s launch abort. The six-person crew traveled to KSC to participate in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the launch countdown, on Aug. 24.

      Liftoff of Discovery on the STS-64 mission.
      On Sept. 9, 1994, after a more than two-hour delay caused by inclement weather, Discovery thundered into the sky to begin the STS-64 mission. Eight and a half minutes later, the orbiter and its crew reached space, and with a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines they entered a 160-mile orbit inclined 57 degrees to the equator, ideal for Earth and atmospheric observations. The crew opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. They began to convert their vehicle into a science platform.

      Left: LIDAR (light detection and ranging) In-space Technology Experiment (LITE) telescope in Discovery’s payload bay. Middle: Schematic of LITE data acquisition. Right: Image created from LITE data of clouds over southeast Asia.
      One of the primary payloads on STS-64, the LIDAR (light detection and ranging) In-space Technology Experiment (LITE), mounted in Discovery’s forward payload bay, made the first use of a laser to study Earth’s atmosphere, cloud cover, and airborne dust from space. Lee, with help from Richards and Meade, activated LITE, built at NASA’s Langley Research Center in Hampton, Virginia, on the flight’s first day. The experiment operated for 53 hours during the mission, gathering 43 hours of high-rate data shared with 65 groups in 20 countries.

      Left: View of the shuttle’s Remote Manipulator System, or robotic arm, holding the 33-foot long Shuttle Plume Impingement Flight Experiment (SPIFEX). Middle: Closeup view of SPIFEX. Right: A video camera view of Discovery from SPIFEX.
      The Shuttle Plume Impingement Flight Experiment (SPIFEX), built at NASA’s Johnson Space Center (JSC) in Houston, consisted of a package of instruments positioned on the end of a 33-foot boom, to characterize the behavior of the shuttle’s Reaction Control System (RCS) thrusters. On the flight’s second day, Helms used the shuttle’s Remote Manipulator System (RMS), or robotic arm, to pick up SPIFEX. Over the course of the mission, she, Lee, and Hammond took turns operating the arm to obtain 100 test points during various thruster firings. A video camera on SPIFEX returned images of Discovery from several unusual angles.

      Left: Astronaut Susan J. Helms lifts the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) out of Discovery’s payload bay prior to its release. Middle: Discovery approaches SPARTAN during the rendezvous. Right: Astronaut Susan J. Helms operating the Shuttle’s Remote Manipulator System prepares to grapple SPARTAN.
      On the mission’s fifth day, Helms used the RMS to lift the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) satellite out of the payload bay and released it. Two and a half minutes later, SPARTAN activated itself, and Richards maneuvered Discovery away from the satellite so it could begin its science mission. On flight day seven, Discovery began its rendezvous with SPARTAN, and Hammond flew the shuttle close enough for Helms to grapple it with the arm and place it back in the payload bay. During its two-day free flight, SPARTAN’s two telescopes studied the acceleration and velocity of the solar wind and measured aspects of the Sun’s corona or outer atmosphere.

      Left: Patch for the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER). Middle: Astronauts Mark C. Lee, left, and Carl J. Meade during the 15-minute prebreathe prior to their spacewalk. Right: Lee, left, tests the SAFER while Meade works on other tasks in the payload bay.
      On flight day seven, in preparation for the following day’s spacewalk, the astronauts lowered the pressure in the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi to reduce the likelihood of the spacewalkers, Lee and Meade, from developing decompression sickness, also known as the bends. As an added measure, the two spent 15 minutes breathing pure oxygen before donning their spacesuits and exiting the shuttle’s airlock.

      Left: Astronaut Mark C. Lee tests the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) during an untethered spacewalk. Middle: Astronaut Carl J. Meade tests the SAFER during an untethered spacewalk. Right: Meade, left, tests the ability of the SAFER to stop his spinning as Lee looks on.
      The main tasks of the spacewalk involved testing the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER), a device designed at JSC that attaches to the spacesuit’s Portable Life Support System backpack. The SAFER contains nitrogen jets that an astronaut can use, should he or she become untethered, to fly back to the vehicle, either the space shuttle or the space station. The two put the SAFER through a series of tests, including a familiarization, a system engineering evaluation, a crew rescue evaluation, and a precision flight evaluation. During the tests, Lee and Meade remained untethered from the shuttle, the first untethered spacewalk since STS-51A in November 1984. Lee and Meade successfully completed all the tests and gave the SAFER high marks. Astronauts conducting spacewalks from the space station use the SAFER as a standard safety device. Following the 6-hour 51-minute spacewalk, the astronauts raised the shuttle’s atmosphere back to 14.7 psi.

      A selection of STS-64 crew Earth observation photographs. Left: Mt. St. Helens in Washington State. Middle left: Cleveland, Ohio. Middle right: Rabaul Volcano, Papua New Guinea. Right: Banks Peninsula, New Zealand.
      Like on all space missions, the STS-64 astronauts spent their spare time looking out the window. They took numerous photographs of the Earth, their high inclination orbit allowing them views of parts of the planet not seen during typical shuttle missions.

      Left: The Solid Surface Combustion Experiment middeck payload. Middle: Jerry M. Linenger gets in a workout while also evaluating the treadmill. Right: Inflight photograph of the STS-64 crew.
      In addition to their primary tasks, the STS-64 crew also conducted a series of middeck experiments and tested hardware for future use on the space shuttle and space station.

      Left: Commander Richard “Dick” Richards suited up for reentry. Middle: Pilot L. Blaine Hammond, left, and Mission Specialists Carl J. Meade and Susan J. Helms prepare for reentry. Right: Hammond fully suited for entry and landing.
      Mission managers had extended the original flight duration by one day for additional data collection for the various payloads. On the planned reentry day, Sept. 19, bad weather at KSC forced the crew to spend an additional day in space. The next day, continuing inclement weather caused them to wave off the first two landing attempts at KSC and diverted to Edwards Air Force Base (AFB) in California.

      Left: Richard Richards brings Discovery home at California’s Edwards Air Force Base. Middle: Workers at Edwards safe Discovery after its return from STS-64. Right: Discovery takes off from Edwards atop a Shuttle Carrier Aircraft for the ferry flight to NASA’s Kennedy Space Center in Florida.
      On Sept. 20, they closed Discovery’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. They fired Discover’s OMS engines to drop them out of orbit. Richards piloted Discovery to a smooth landing at Edwards, ending the 10-day 22-hour 50-minute flight. The crew had orbited the Earth 176 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Sept. 26, and after an overnight stop at Kelly AFB in San Antonio, arrived at KSC the next day. Workers there began preparing Discovery for its next flight, the STS-63 Mir rendezvous mission, in February 1995.
      Enjoy the crew narrate a video about the STS-64 mission. Read Richards’ recollections of the mission in his oral history with the JSC History Office.
      Explore More
      5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 5 days ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 7 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 2 weeks ago View the full article
    • By NASA
      The four-person crew of the Polaris Dawn mission pictured wearing their SpaceX extravehicular activity suits.Credit: SpaceX NASA researchers will soon benefit from a suite of experiments flying aboard a new fully-commercial human spaceflight mission, strengthening future agency science as we venture to the Moon, Mars and beyond.
      The experiments are flying as part of the Polaris Dawn mission which launched aboard a SpaceX Dragon spacecraft and Falcon 9 rocket earlier today.
      The four-person Polaris Dawn crew of Jared Isaacman, Scott “Kidd” Poteet, Sarah Gillis, and Anna Menon will conduct science during the mission including essential health and human performance research for NASA’s Human Research Program. The research will help NASA scientists better understand how exposure to space conditions affects the human body. The crew will test new medical approaches and technology on telemedicine capabilities, gather data on space motion sickness, and better characterize flight-associated injury risks.
      “Each mission, whether the crew is comprised of commercial or NASA astronauts, provides a key opportunity to expand our knowledge about how spaceflight affects human health,” said Jancy McPhee, associate chief scientist for human research at NASA. “Information gathered from Polaris Dawn will give us critical insights to help NASA plan for deeper space travel to the Moon and Mars.”
      The crew will test drive, a commercial device that can collect and integrate measurements of health, including blood pressure, heart rate, respiration rate, and temperature. The technology also provides ultrasound imaging and larynx and throat-focused video camera capabilities, and includes an experimental telemedicine feature that could help diagnose crew members in near-real time.
      To test this technology during the mission, crew members will compare vital sign collection from the device with data gathered from standard periodic health status exams. The technology’s telemedicine feature, which relies on SpaceX’s Starlink communications system to connect with doctors and specialists on Earth, will also be tested during a simulation. During the test, the device will attempt to offer an appropriate diagnosis based on crew inputs and available documentation.
      “Crew members will need to be more self-reliant during lengthy missions, and we hope that telemedicine can provide crews with assistance,” said McPhee.
      Another research project aims to better understand and prevent the motion sickness symptoms that many astronauts experience in space. Participating crew members will describe their motion sickness symptoms, what interventions they tried to alleviate their symptoms, and whether any approaches helped.
      A separate NASA-based research project will survey crew members after their mission to see whether they experienced any injuries or discomfort during re-entry to Earth.
      “Our team will take the crew’s survey data and combine it with information gathered from sensors on the spacecraft. This will allow us to link crews’ reported experiences and health outcomes with the spacecraft’s dynamics and landing loads,” said Preston Greenhalgh, an injury biomechanist at NASA who is leading this work.
      Crew members also will participate in a variety of other health studies on behalf of the NASA-funded TRISH (Translational Research Institute for Health), a consortium with various academic institutions. As part of that work, the Polaris Dawn mission will set a new baseline for collecting standard health data on commercial spaceflights, creating a complement to the datasets  routinely collected from NASA astronauts and missions.
      Polaris Dawn crew members participating in these TRISH studies will provide data about how spaceflight affects mental and physical health through a rigorous set of medical tests and scans completed before, after, and during the mission. The work will include assessments of behavior, sleep, bone density, eye health, cognitive function, and other factors, as well as analysis of blood, urine, and respiration.
      “We’re so grateful to the crew members who volunteer to be part of NASA’s work. The insights that we gain from each study may trigger breakthroughs that will help ensure future mission success,” said McPhee.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as space exploration expands to the Moon, Mars, and beyond.
      Explore More
      3 min read NASA Astronaut Don Pettit’s Science of Opportunity on Space Station
      Article 6 days ago 3 min read NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production
      Article 2 weeks ago 4 min read NASA Seeks Input for Astrobee Free-flying Space Robots
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By Amazing Space
      Boeing Starliner Returns To Earth EMPTY!
  • Check out these Videos

×
×
  • Create New...