Members Can Post Anonymously On This Site
NASA’s Boeing Starliner Mission Landing Criteria, Timeline
-
Similar Topics
-
By NASA
NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
Learn more about International Space Station research and operations at:
https://www.nasa.gov/station
-end-
Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
-
By NASA
5 Min Read NASA Langley’s Legacy of Landing
The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
Project Mercury: 1958
Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
Apollo Program: 1962
In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
Lunar Orbiter: 1966
The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
Viking: 1976
After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
HIAD: 2009 – Present
Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
IRVE – 2009-2012
Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
LOFTID – 2022
The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
MEDLI 1 and 2: 2012 & 2020
As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
Curiosity Rover
Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
CLPS: 2023 – Present
The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
NDL
Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
SCALPSS
Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years.
About the Author
Angelique Herring
Share
Details
Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
General Langley Research Center Explore More
4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
Article 2 years ago 7 min read Langley’s Contributions to Artemis
Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
Article 2 years ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The European Space Agency (ESA) has selected Airbus to design and build the landing platform for the ExoMars Rosalind Franklin rover. In 2028, ESA will launch this ambitious exploration mission to search for past and present signs of life on Mars.
View the full article
-
By NASA
NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.
NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.
The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.
Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.
Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.
With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.
The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Courtney Beasley / Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms
Commercial Space Commercial Crew Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Low Earth Orbit Economy Space Operations Mission Directorate
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.