Jump to content

Eclipses Create Atmospheric Gravity Waves, NASA Student Teams Confirm


Recommended Posts

  • Publishers
Posted
4 Min Read

Eclipses Create Atmospheric Gravity Waves, NASA Student Teams Confirm

The Moon passes in front of the sun casting its shadow, or umbra, and darkening a portion of the Earth's surface during the annular solar eclipse. The International Space Station was soaring 260 miles above the U.S.-Canadian border as this picture was taken pointing southward toward Texas.
In this photo taken from the International Space Station, the Moon passes in front of the Sun casting its shadow, or umbra, and darkening a portion of the Earth's surface above Texas during the annular solar eclipse Oct. 14, 2023.
Credits: NASA

Student teams from three U.S. universities became the first to measure what scientists have long predicted: eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. The waves’ telltale signature emerged in data captured during the North American annular solar eclipse on Oct. 14, 2023, as part of the Nationwide Eclipse Ballooning Project (NEBP) sponsored by NASA.

Through NEBP, high school and university student teams were stationed along the eclipse path through multiple U.S. states, where they released weather balloons carrying instrument packages designed to conduct engineering studies or atmospheric science. A cluster of science teams located in New Mexico collected the data definitively linking the eclipse to the formation of atmospheric gravity waves, a finding that could lead to improved weather forecasting.

“Climate models are complicated, and they make some assumptions about what atmospheric factors to take into account.”

Angela Des Jardins

Angela Des Jardins

Director of the Montana Space Grant Consortium, which led NEBP.

“Understanding how the atmosphere reacts in the special case of eclipses helps us better understand the atmosphere, which in turn helps us make more accurate weather predictions and, ultimately, better understand climate change.”

Catching Waves in New Mexico

Previous ballooning teams also had hunted atmospheric gravity waves during earlier eclipses, research that was supported by NASA and the National Science Foundation. In 2019, an NEBP team stationed in Chile collected promising data, but hourly balloon releases didn’t provide quite enough detail. Attempts to repeat the experiment in 2020 were foiled by COVID-19 travel restrictions in Argentina and a heavy rainstorm that impeded data collection in Chile.

Project leaders factored in these lessons learned when planning for 2023, scheduling balloon releases every 15 minutes and carefully weighing locations with the best potential for success.

“New Mexico looked especially promising,” said Jie Gong, a researcher in the NASA Climate and Radiation Lab at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and co-investigator of the research on atmospheric gravity waves. “The majority of atmospheric gravity sources are convection, weather systems, and mountains. We wanted to eliminate all those possible sources.”

The project created a New Mexico “supersite” in the town of Moriarty where four atmospheric science teams were clustered: two from Plymouth State University in Plymouth, New Hampshire, and one each from the State University of New York (SUNY) Albany and SUNY Oswego.

Students began launching balloons at 10 a.m. the day before the eclipse.

“They worked in shifts through the day and night, and then everyone was on site for the eclipse,” said Eric Kelsey, research associate professor at Plymouth State and the NEBP northeast regional lead.

“Our hard work really paid off. The students had a real sense of accomplishment.”

Eric Kelsey

Eric Kelsey

Research Associate Professor at Plymouth State and the NEBP Northeast Regional Lead.

Each balloon released by the science teams carried a radiosonde, an instrument package that measured temperature, location, humidity, wind direction, and wind speed during every second of its climb through the atmosphere. Radiosondes transmitted this stream of raw data to the team on the ground. Students uploaded the data to a shared server, where Gong and two graduate students spent months processing and analyzing it.

Confirmation that the eclipse had generated atmospheric gravity waves in the skies above New Mexico came in spring 2024.

“We put all the data together according to time, and when we plotted that time series, I could already see the stripes in the signal,” Gong said. “I bombarded everybody’s email. We were quite excited.”

Plymouth State University students Sarah Brigandi, left, and Sammantha Boulay release a weather balloon from Moriarty, New Mexico, to collect atmospheric data on Oct. 14, 2023.
Plymouth State University students Sarah Brigandi, left, and Sammantha Boulay release a weather balloon from Moriarty, New Mexico, to collect atmospheric data on Oct. 14, 2023.
NASA

For Students, Learning Curves Bring Opportunity

The program offered many students their first experience in collecting data. But the benefits go beyond technical and scientific skill.

“The students learned a ton through practicing launching weather balloons,” Kelsey said. “It was a huge learning curve. They had to work together to figure out all the logistics and troubleshoot. It’s good practice of teamwork skills.”

“All of this is technically complicated,” Des Jardins said. “While the focus now is on the science result, the most important part is that it was students who made this happen.”

NASA’s Science Mission Directorate Science Activation program funds NEBP, along with contributions from the National Space Grant College and Fellowship Project and support from NASA’s Balloon Program Office.

Learn More:

Montana State-led ballooning project confirms hypothesis about eclipse effects on atmosphere

Nationwide Eclipse Ballooning Project

NASA Selects Student Teams for High-Flying Balloon Science

NASA Science Activation

NASA Space Grant

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Drones were a key part of testing new technology in support of a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies. From left are Tim Wallace and Michael Filicchia of the Desert Research Institute in Nevada; Derek Abramson, Justin Hall, and Alexander Jaffe of NASA’s Armstrong Flight Research Center in Edwards California; and Alana Dachtler of International Met Systems of Kentwood, Michigan.NASA/Jackie Shuman Advancements in NASA’s airborne technology have made it possible to gather localized wind data and assess its impacts on smoke and fire behavior. This information could improve wildland fire decision making and enable operational agencies to better allocate firefighters and resources. A small team from NASA’s Armstrong Flight Research Center in Edwards, California, is demonstrating how some of these technologies work.
      Two instruments from NASA’s Langley Research Center in Hampton, Virginia – a sensor gathering 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data – were installed on NASA Armstrong’s Alta X drone for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.
      “The objectives for the Alta X portion of the multi-agency prescribed burn include a technical demonstration for wildland fire practitioners, and data collection at various altitudes for the Alabama Forestry Commission operations,” said Jennifer Fowler, FireSense project manager. “Information gathered at the different altitudes is essential to monitor the variables for a prescribed burn.”
      Those variables include the mixing height, which is the extent or depth to which smoke will be dispersed, a metric Fowler said is difficult to predict. Humidity must also be above 30% for a prescribed burn. The technology to collect these measurements locally is not readily available in wildland fire operations, making the Alta X and its instruments key in the demonstration of prescribed burn technology.
      A drone from NASA’s Armstrong Flight Research Center, Edwards, California, flies with a sensor to gather 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data from NASA’s Langley Research Center in Hampton, Virginia. The drone and instruments supported a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.International Met Systems/Alana Dachtler In addition to the Alta X flights beginning March 25, NASA Armstrong’s B200 King Air will fly over actively burning fires at an altitude of about 6,500 feet. Sensors onboard other aircraft supporting the mission will fly at lower altitudes during the fire, and at higher altitudes before and after the fire for required data collection. The multi-agency mission will provide data to confirm and adjust the prescribed burn forecast model.
      Small, uncrewed aircraft system pilots from NASA Armstrong completed final preparations to travel to Alabama and set up for the research flights. The team – including Derek Abramson, chief engineer for the subscale flight research laboratory; Justin Hall, NASA Armstrong chief pilot of small, uncrewed aircraft systems; and Alexander Jaffe, a drone pilot – will set up, fly, observe airborne operations, all while keeping additional aircraft batteries charged. The launch and recovery of the Alta X is manual, the mission profile is flown autonomously to guarantee the same conditions for data collection.
      “The flight profile is vertical – straight up and straight back down from the surface to about 3,000 feet altitude,” Abramson said. “We will characterize the mixing height and changes in moisture, mapping out how they both change throughout the day in connection with the burn.”
      In August 2024, a team of NASA researchers used the NASA Langley Alta X and weather instruments in Missoula, Montana, for a FireSense project drone technology demonstration. These instruments were used to generate localized forecasting that provides precise and sustainable meteorological data to predict fire behavior and smoke impacts.
      Justin Link, left, pilot for small uncrewed aircraft systems, and Justin Hall, chief pilot for small uncrewed aircraft systems, install weather instruments on an Alta X drone at NASAs Armstrong Flight Research Center in Edwards, California. Members of the center’s Dale Reed Subscale Flight Research Laboratory used the Alta X to support the agency’s FireSense project in March 2025 for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama.NASA/Steve Freeman Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science B200 Drones & You Langley Research Center Science Mission Directorate Explore More
      5 min read NASA Langley’s Legacy of Landing
      Article 7 hours ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
      Article 23 hours ago 2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      13 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.
      The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.
      Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.
      The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.
      A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A
      Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.
      USRC Awards
      Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
      Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
      Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
      Faculty Mentors: Jaewon Kim and Sandip Roy
      Selected: 2025
      Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
      Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
      Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
      Faculty Mentor: Felix Ewere
      Selected: 2025
      Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
      Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
      Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
      Faculty Mentor: Omid Beik
      Selected: 2024
      Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
      Mitigating wildfires with drone released fire retardant pellets.
      Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
      Faculty Mentor: Janet McLarty-Schroeder
      Selected: 2024
      Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
      Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
      Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
      Faculty Mentor: Sanjiban Choudhury, Susan Fussell
      Selected: 2024
      Crowdfunding Website
      Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
      Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
      Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
      Faculty Mentor: Fiona Spencer, Robert Breidenthal
      Selected: 2024
      Crowdfunding Website

      Web Article: “Students win NASA grant to develop AI for safer aerial traffic“
      Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
      An ocean-based fueling station and a survey drone that can refuel in remote areas.
      Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
      Faculty Mentor: Li Qiao
      Selected: 2023
      Crowdfunding Website
      Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
      Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
      Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
      Faculty Mentor: Xiangyu Meng
      Selected: 2023
      Crowdfunding Website
      Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
      Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
      Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
      Faculty Mentor: Cynthia Flores
      Selected: 2023
      Crowdfunding Website
      Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
      Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
      Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
      Faculty Mentor: Sergey V. Drakunov
      Selected: 2023
      Crowdfunding Website

      Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge“
      AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
      Creating new propeller blades and fixed wing design concepts that mimic the features of an
      owl feather and provide substantial noise reduction benefits.
      Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
      Faculty Mentor: Bhisham Sharma
      Selected: 2023
      Crowdfunding Website
      Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
      Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
      Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
      Faculty Mentor: Woongkul Lee
      Selected: 2023
      Crowdfunding Website

      LEADS team Website
      UAM Contingency Diagnosis Toolkit (Ohio State University)
      A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
      Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
      Faculty Mentor: Martijn IJtsma
      Selected: 2023
      Crowdfunding Website

      Project Website

      Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge“
      Hybrid Quadplane Search and Rescue Missions (NC A&T University)
      An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
      Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
      Faculty Mentor: A. Homaifar
      Selected: 2023
      Crowdfunding Website
      Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
      An autonomous water sampling drone system.
      Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
      Faculty Mentor: Onur Bilgen
      Selected: 2023
      Crowdfunding Website

      Project Website
      Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
      A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
      Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
      Faculty Mentor: John Lewandowski
      Selected: 2023
      Crowdfunding Website

      Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine“
      Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
      Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
      Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
      Faculty Mentor: Venkatesan Muthukumar
      Selected: 2022
      Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
      Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
      Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
      Faculty Mentor: Adam Nokes
      Selected: 2022
      Crowdfunding Website

      Project Website

      Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge“
      Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
      Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
      Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
      Faculty Mentor: Victor Maldonado 
      Selected: 2022
      Crowdfunding Website

      Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies“
      Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
      A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
      Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
      Faculty Mentor: Bo Zou
      Selected: 2022
      Crowdfunding Website

      Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems“
      Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
      A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
      Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
      Faculty Mentor: Naira Hovakimyan
      Selected: 2022
      Crowdfunding Website

      Web Article: “NASA funds UAV traffic management research“
      AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
      An aerostat enabled low-energy UAV payload delivery system
      Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
      Faculty Mentor: Suresh Advani
      Selected: 2022
      Crowdfunding Website
      Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
      An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
      Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
      Faculty Mentor: Edward DeMauro
      Selected: 2022
      Crowdfunding Website

      Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge“

      A recorded STRATO USRC Tech Talk
      Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
      Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
      Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
      Faculty Mentor: Jane Cleland-Huang
      Selected: 2021
      Crowdfunding Website

      Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology“
      Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
      A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
      Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
      Faculty Mentor: Woongkul Lee
      Selected: 2021
      AIDED Crowdfunding Website

      AIDED Project Website or Team Website

      Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA“

      A recorded USRC Tech Talk
      Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
      A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
      Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
      Faculty Mentor: Christopher Williams
      Selected: 2021
      Crowdfunding Website

      RAV-FAB Project Website

      Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech“

      NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants“

      Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect

      Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube

      View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2
      Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
      A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
      Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
      Faculty Mentor: Atieh Moridi
      Selected: 2021
      Crowdfunding Website

      AMAS Project Website

      Web Article: “Students win NASA challenge with 3D-printer smart sensor“

      A recorded USRC Tech Talk on this topic
      AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
      A drone swarm system capable of carrying a payload in the air indefinitely
      Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
      Faculty Mentor: Jeff Eldredge
      Selected: 2020
      Crowdfunding Website

      AVIATA Project Website

      A recorded USRC Tech Talk on AVIATA

      The recorded poster session at the TACP Showcase 2021
      Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
      A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
      Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
      Faculty Mentor: John Robbins
      Selected: 2020
      Crowdfunding Website

      Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition“

      Follow the team’s progress at: https://www.facebook.com/Assured Autonomy

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
      Extending drone delivery distance with a multi-mode hybrid delivery system
      Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
      Faculty Mentor: Onur Bilgen
      Selected: 2020
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
      Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
      Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
      Faculty Mentor: Kelly Griendling
      Selected: 2020
      Go to AVIS team site

      A recorded USRC Tech Talk on AVIS

      The recorded poster session at the TACP Showcase 2021

      NASA Web Article
      Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
      Model and test powertrain to maximize the efficiency of hybrid airplanes
      Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
      Faculty Mentor: Paulo Iscold
      Selected: 2019
      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      ATLAS Air Transportation (South Dakota State University)
      A multipurpose, automated drone capable of comfortably lifting the weight of an average person
      Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS

      The recorded poster session at the TACP Showcase 2021
      Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
      A novel solution of enhanced GPS navigation for unmanned aerial vehicles
      Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      UAV Traffic Information Exchange Network (Purdue University)
      A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
      Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
      Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
      Selected: 2018
      Web Article: “Student-developed communication network for UAVs interests NASA“
      The recorded poster session at the TACP Showcase 2021
      University Student Research Challenge
      University Leadership Initiative
      University Innovation Project
      Transformative Aeronautics Concepts Program
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA University Research Program Makes First Award to a Community College Project
      Article 1 month ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards
      Article 1 month ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Follow Us on Social Media
      Explore NASA’s History
      Share
      Details
      Last Updated Apr 03, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      University Student Research Challenge View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, corta madera contrachapada a medida para las tablas del piso temporal del avión demostrador experimental X-66 el 26 de agosto de 2024.NASA/Steve Freeman Lee esta historia en español aquí.
      La NASA diseño unas tablas de piso temporales para el avión MD-90, que se utilizaran mientras el avión se transforma en el demostrador experimental X-66. Estas tablas de piso protegerán el piso original y agilizarán el proceso de modificación.  
      En apoyo al proyecto Demostrador de Vuelo Sostenible de la agencia, un pequeño equipo del Taller de Fabricación Experimental del Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California, construyó tablas de piso temporales para ahorrarle tiempo y recursos al proyecto. La retirada e instalación repetidas del piso original durante el proceso de modificación requería mucho tiempo. El uso de paneles temporales también garantiza la protección de las tablas del piso original y su aptitud para el vuelo cuando se finalicen las modificaciones y se vuelva a instalar el piso original. 
      “La tarea de crear las tablas de piso temporales para el MD-90 implica un proceso meticuloso dirigido a facilitar las modificaciones, manteniendo la seguridad y la eficacia. La necesidad de estas tablas de piso temporales surge del detallado procedimiento necesario para retirar y reinstalar los pisos originales del fabricante (OEM, por su acrónimo inglés),” explica Jason Nelson, jefe de fabricación experimental. Él es uno de los dos miembros del equipo de fabricación – un técnico de ingeniería y un inspector – que fabrica acerca de 50 tablas de piso temporales, con dimensiones que varían entre 20 pulgadas por 36 pulgadas y 42 pulgadas por 75 pulgadas. 
      Una máquina de madera corta agujeros precisos en madera contrachapada para las tablas del piso temporal el 26 de agosto de 2024, en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California. El piso fue diseñado para el avión de demonstración experimental X-66. NASA/Steve Freeman Nelson continuó, “Como estas tablas OEM se quitarán y volverán a instalar varias veces para acomodar las modificaciones necesarias, las tablas temporales ahorrarán al equipo tiempo y recursos valiosos. También proporcionarán el mismo nivel de seguridad y resistencia que las tablas OEM, garantizando que el proceso se desarrolle sin problemas y sin comprometer la calidad.” 
      El diseño y la creación de prototipos del piso fue un proceso meticuloso, pero la solución temporal desempeña un papel crucial en la optimización del tiempo y los recursos en los esfuerzos de la NASA por avanzar en la seguridad y la eficiencia de los viajes aéreos. El proyecto Demostrador de Vuelo Sostenible de la agencia busca informar la próxima generación de aviones pasajeros de un solo pasillo, que son las aeronaves más comunes de aviación comercial de todo el mundo. La NASA se asoció con Boeing para desarrollar el avión de demostración experimental X-66.  El Taller de Fabricación Experimental de Armstrong de la NASA lleva a cabo modificaciones y trabajos de reparación en aeronaves, que van desde la creación de algo tan pequeño como un soporte de aluminio hasta la modificación de la estructura principal de las alas, las costillas del fuselaje, las superficies de control y otras tareas de apoyo a las misiones.
      Eric Garza, técnico de ingeniería en el Taller de Fabricación Experimental del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, observa cómo una máquina de madera corta agujeros para las tablas del piso temporal el 26 de agosto de 2024. El piso fue diseñado para el avión de demostración experimental X-66. NASA/Steve Freeman Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 3 weeks ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 4 months ago 10 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 4 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA Langley’s Legacy of Landing
      The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
      Project Mercury: 1958
      Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
      An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
      Apollo Program: 1962
      In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
      Lunar Orbiter: 1966
      The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
      Viking: 1976
      After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
      HIAD: 2009 – Present
      Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
      IRVE – 2009-2012
      Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
      LOFTID – 2022
      The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
      MEDLI 1 and 2: 2012 & 2020
      As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
      Curiosity Rover
      Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
      CLPS: 2023 – Present
      The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
      NDL
      Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
      SCALPSS
      Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years. 
      About the Author
      Angelique Herring

      Share
      Details
      Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      General Langley Research Center Explore More
      4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
      Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
      Article 2 years ago 7 min read Langley’s Contributions to Artemis
      Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
      Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...