Jump to content

Sol 4294: Return to McDonald Pass


NASA

Recommended Posts

  • Publishers

2 min read

Sol 4294: Return to McDonald Pass

A grayscale photograph of the Martian surface, in a wide-angle, nearly fisheye view, shows a flat, medium gray area in front of the rover, covered with rocks and pebbles of various sizes, with a very large slab of much lighter-colored rock at the center of the image. Parts of the rover are visible in the four corners of the frame, and in the distance are two large, layered buttes rising from the ground.
This image was taken by Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on sol 4293 — Martian day 4,293 of the Mars Science Laboratory mission — Sept. 3, 2024 at 04:09:27 UTC.
NASA/JPL-Caltech

Earth planning date: Tuesday, Sept. 3, 2024

Curiosity has returned to “McDonald Pass,” a block within Gediz Vallis that we first spotted about a month ago (as seen in the above Front Hazcam image). The block shows some interesting zonation — the distribution of textures and colors into different areas, or zones. We’re hoping that by studying the well-exposed relationships between white, gray, and tan material at this location that we’ll be able to better understand similar relationships that we’ve observed elsewhere. The drive over the weekend got us back to McDonald Pass, but perhaps one step too far. We realized that the best spot to study these zones is directly beneath the rover, so today’s plan includes contact science and a short bump to position the rover for even more science tomorrow.

Today was a rare one-sol plan, to account for the U.S. holiday yesterday. I was on shift as the Long Term Planner and it was a fairly straightforward day once we established the best locations for contact science. The plan starts with a DRT and APXS on the central part of the slab, at a target named “Erin Lake.” Then we have a remote sensing block, which begins with some environmental monitoring to search for dust devils, measure atmospheric opacity, and monitor the movement of fines on the rover deck. The Geology Theme group planned ChemCam LIBS on the darker gray rim of this block at “Paris Lake,” along with a ChemCam passive observation on an interesting dark float block nearby. There’s also a long distance RMI mosaic to assess the yardang unit higher on Mount Sharp, and a Mastcam mosaic to evaluate the textures in a row of large clasts. Later in the afternoon, Curiosity will acquire MAHLI images of Erin Lake and another target, “Picture Puzzle,” which captures the white, gray, and tan zones. Then Curiosity will take a short drive back about 1 meter (about 3.3 feet) to position a white and gray clast in our workspace for even more contact science tomorrow. 

Will McDonald Pass be the key to understanding the zonation observed in blocks throughout this region? Stay tuned!

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated
Sep 05, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The American flag pictured inside the window of Boeing’s Starliner spacecraft at the International Space Station.Credit: NASA NASA will provide live coverage of the upcoming activities for Boeing’s Starliner spacecraft departure from the International Space Station and return to Earth. The uncrewed spacecraft will depart from the orbiting laboratory for a landing at White Sands Space Harbor in New Mexico.
      Starliner is scheduled to autonomously undock from the space station at approximately 6:04 p.m. EDT Friday, Sept. 6, to begin the journey home, weather conditions permitting. NASA and Boeing are targeting approximately 12:03 a.m., Saturday, Sept. 7, for the landing and conclusion of the flight test.
      NASA’s live coverage of return and related activities will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA programming through a variety of platforms including social media.
      Ahead of Starliner’s return, NASA will host a pre-departure news conference at 12 p.m., Wednesday, Sept. 4, from the agency’s Johnson Space Center in Houston. NASA’s Commercial Crew and International Space Station Program managers and a flight director will participate.
      To attend the pre-departure news conference in person, U.S. media must contact the NASA Johnson newsroom by 5 p.m., Tuesday, Sept. 3, at jsccommu@mail.nasa.gov or 281-483-5111. To join the pre-departure news conference by phone, media must contact the NASA newsroom no later than two hours prior to the start of the call.
      NASA astronauts Butch Wilmore and Suni Williams launched aboard Boeing’s Starliner spacecraft on June 5 for its first crewed flight, arriving at the space station on June 6. As Starliner approached the orbiting laboratory, NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters. For the safety of the astronauts, NASA announced on Aug. 24 that Starliner will return to Earth from the station without a crew. Wilmore and Williams will remain aboard the station and return home in February 2025 aboard the SpaceX Dragon spacecraft with two other crew members assigned to NASA’s SpaceX Crew-9 mission.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 4
      12 p.m. – Starliner pre-departure news conference from NASA’s Johnson Space Center on NASA+, the NASA app, YouTube, and the agency’s website.
      Friday, Sept. 6
      5:45 p.m. – Undocking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      6:04 p.m. – Undocking
      10:50 p.m. – Coverage resumes for deorbit burn, entry, and landing on NASA+, the NASA app, YouTube, and the agency’s website.
      Saturday, Sept. 7
      12:03 a.m. – Targeted landing
      1:30 a.m. – Post-landing news conference with the following participants:
      Joel Montalbano, deputy associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, Commercial Crew Program, NASA Kennedy Space Center in Florida Dana Weigel, manager, International Space Station, NASA Johnson John Shannon, vice president, Boeing Exploration Systems Mark Nappi, vice president and program manager, Boeing Commercial Crew Program Coverage of the post-landing news conference will stream live on NASA+, the NASA app, YouTube, and the agency’s website.
      To attend the post-landing news conference in person, U.S. media must contact the NASA Johnson newsroom by 12 p.m., Sept. 6. To join the post-landing news conference by phone, media must contact the NASA Johnson newsroom no later than one hour prior to the start of the event.
      See full mission coverage, NASA’s commercial crew blog, and more information about the mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.sieceloff@nasa.gov
      Share
      Details
      Last Updated Aug 30, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      Both versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope appear in this photo, taken in the largest clean room at NASA’s Goddard Space Flight Center. The flight version lies flat in the foreground, while the qualification assembly stands upright in the background. The flight panels will shade the mission’s instruments and power the observatory. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope’s Solar Array Sun Shield has successfully completed recent tests, signaling that the assembly is on track to be completed on schedule. The panels are designed to power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      The Roman team has two sets of these panels –– one that will fly aboard the observatory and another as a test structure, used specifically for preliminary assessments.
      Engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, evaluated the test version in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment the flight panels will experience in space. Since the panels will be stowed for launch, the team practiced deploying them in space-like conditions.
      The solar panels for NASA’s Nancy Grace Roman Space Telescope are undergoing assessment in a test chamber at the agency’s Goddard Space Flight Center in this photo.NASA/Chris Gunn Meanwhile, a vendor built up the flight version by fitting the panels with solar cells. After delivery to Goddard, technicians tested the solar cells by flashing the panels with a bright light that simulates the Sun.
      “We save a significant amount of time and money by using two versions of the panels, because we can do a lot of preliminary tests on a spare while moving further in the process with the flight version,” said Jack Marshall, the Solar Array Sun Shield lead at NASA Goddard. “It streamlines the process and also avoids risking damage to the panels that will go on the observatory, should testing reveal a flaw.”
      Next spring, the flight version of the Solar Array Sun Shield will be installed on the Roman spacecraft. Then, the whole spacecraft will go through thorough testing to ensure it will hold up during launch and perform as expected in space.
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
      Article 2 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 1 month ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 4 months ago Share
      Details
      Last Updated Aug 26, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Space Communications Technology View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Editor’s note: This article was updated Aug. 20, 2024, to reflect the latest information from NASA’s Office of Communications.
      NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6 aboard the Boeing Starliner after lifting off on June 5 from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida.
      During Starliner’s flight to the space station, engineers noticed some of the spacecraft’s thrusters did not perform as expected and several leaks in Starliner’s helium system also were observed. Engineering teams at NASA and Boeing have since conducted several thruster tests and in-depth data reviews to better understand the spacecraft. While engineers work to resolve technical issues before Starliner’s return to Earth, the astronaut duo have been working with the Expedition 71 crew, performing scientific research and maintenance activities.
      NASA now plans to conduct two reviews – a Program Control Board and an Agency Flight Readiness Review – before deciding how it will safely return Wilmore and Williams from the station. NASA expects to decide on the path forward by the end of August.
      Here are some frequently asked questions about their mission.
      About the Mission and Delay
      What is NASA’s Boeing Crew Flight Test?
      NASA’s Boeing Crew Flight Test launched on June 5, and is the first flight of the Starliner spacecraft to the International Space Station with astronauts. The flight test aims to prove the system is ready for rotational missions to the space station. NASA wants two American spacecraft, in addition to the Roscosmos Soyuz spacecraft, capable of carrying astronauts to help ensure a permanent crew aboard the orbiting complex.
      What are the goals of the Crew Flight Test?
      This flight test aims to demonstrate Starliner’s ability to execute a six-month rotational mission to the space station. The flight test objectives were developed to support NASA’s certification process and gather the performance data needed to evaluate readiness ahead of long-duration flights.
      Why is the Crew Flight Test staying longer than planned aboard the space station?
      During Starliner’s flight to the space station, some of the spacecraft’s thrusters did not perform as expected and several leaks in Starliner’s helium system were observed. While the initial mission duration was planned for about a week, there is no rush to bring crew home, so NASA and Boeing are taking additional time to learn about the spacecraft. This is a lesson learned from the space shuttle Columbia accident. Our NASA and Boeing teams are poring over data from additional in-space and ground testing and analysis, providing mission managers data to make the best, safest decision on how and when to return crew home.
      If there’s an emergency on the space station, how will Butch and Suni get home?
      Starliner remains the primary option for Butch and Suni if an emergency occurs and they need to rapidly depart the station. There is no urgent need to bring them home, and NASA is using the extra time to understand the spacecraft’s technical issues before deciding on a return plan.
      How long could Butch and Suni stay on the space station if they don’t come home on Starliner?
      If NASA decides to return Starliner uncrewed, Butch and Suni would remain aboard station until late-February 2025. NASA would replan the agency’s SpaceX Crew-9 mission by launching only two crew members instead of four in late September. Butch and Suni would then return to Earth after the regularly scheduled Crew-9 increment early next year.
      Are Butch and Suni staying in space until 2025?
      No decisions have been made. NASA continues to evaluate all options as it learns more about Starliner’s propulsion system. Butch and Suni may return home aboard Starliner, or they could come back as part of the agency’s SpaceX Crew-9 mission early next year.
      Can Starliner fly without astronauts?
      Yes, Starliner can undock and deorbit autonomously, if NASA decides to return the spacecraft uncrewed.
      Could NASA send a SpaceX Dragon to bring Butch and Suni back?
      If NASA decides to return them aboard a SpaceX Dragon, NASA will replan its SpaceX Crew-9 mission by launching only two crew members in late September instead of four. Butch and Suni would then return to Earth after the regularly scheduled Crew-9 increment early next year.
      Why does NASA need two crew transportation systems?
      The main goal of the agency’s Commercial Crew Program is two, unique human spaceflight systems. Should any one system encounter an issue, NASA still has the capability to launch and return crew to ensure safety and a continuous human presence aboard the International Space Station.
      About the Astronauts
      Are Butch and Suni stuck on the space station?
      No, Butch and Suni are safe aboard the space station working alongside the Expedition 71 crew. They also have been actively involved in Starliner testing and technical meetings. Butch and Suni could return home aboard Starliner if an emergency arises. The agency also has other return options available, if needed, for both contingency and normal returning planning.
      Are Suni and Butch prepared for a longer stay on the station?
      Butch and Suni each have previously completed two long-duration stays aboard the station. NASA astronauts embark on missions fully aware of the various scenarios that may become reality. This mission is no different, and they understood the possibilities and unknowns of this test flight, including being aboard station longer than planned.
      How long would an extended stay for Butch and Suni compare to other space station mission lengths?
      A typical stay aboard the International Space Station is about six months, and NASA astronauts also have remained on the space station for longer duration missions. Previous missions have given NASA volumes of data about long-duration spaceflight and its effects on the human body, which the agency applies to any crew mission.
      Do the astronauts have what they need (e.g., food, clothing, oxygen, personal items, etc.)?
      Yes. The International Space Station is well-stocked with everything the crew needs, including food, water, clothing, and oxygen. Additionally, NASA and its space station partners frequently launch resupply missions to the orbiting complex carrying additional supplies and cargo.
      Recently, a Northrop Grumman Cygnus spacecraft carrying 8,200 pounds of food, fuel, supplies, and science and a Progress resupply spacecraft carrying three tons of cargo arrived at the station. NASA has additional SpaceX resupply missions planned through the end of 2024.
      What are they doing aboard the space station?
      The crew continues to monitor Starliner’s flight systems and gather performance data for system certification. NASA also is taking advantage of Butch and Suni’s extra time aboard the orbital laboratory, where they have completed various science experiments, maintenance tasks, and assisted with spacewalk preparations. Some of the science they’ve recently completed includes new ways to produce fiber optic cables and growing plants aboard the orbiting complex.
      Can they talk to their family and friends?
      Butch and Suni enjoy many of the same comforts we have here on Earth. They can email, call, and video conference with their family and friends when they have “free time” aboard the International Space Station.
      About the Return Plan
      What are the other options for bringing Butch and Suni back?
      NASA has two unique American space transportation systems capable of carrying crew to and from station. Although no decisions have been made, NASA is considering several options to return Butch and Suni from the space station, including returning aboard Starliner, if cleared, or as part of agency’s SpaceX Crew-9 mission in February 2025.
      Is it safer to bring them home aboard a SpaceX Dragon?
      Crewed test flights are inherently risky, and although rotation missions may seem routine, they also are not without risk. It is NASA’s job to evaluate that risk and determine whether it is acceptable for crew ahead of each flight.
      What other steps is NASA taking to bring them home?
      NASA adjusted SpaceX Crew-9 launch and the agency’s SpaceX Crew-8 return, allowing more time to finalize Starliner return plans. NASA also is looking at crew assignments to ensure Butch and Suni can return with Crew-9, if needed.
      For NASA’s blog and more information about the mission, visit: https://www.nasa.gov/commercialcrew
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4261-4262: Drill Sol 1…Take 2
      This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4258 — Martian day 4,258 of the Mars Science Laboratory mission — on July 29, 2024, at 03:26:02 UTC. Earth planning date: Wednesday, July 31, 2024
      As Cat mentioned on Monday, today’s plan is a second attempt at our Drill Sol 1 activities. We’ve shifted the target on Kings Canyon a little bit, but the activities remain the same — a preload test to ensure that we’re able to safely drill here, and contact science to get a preview of what composition we might be dealing with in this target.
      Around these pre-drilling activities, we still had some time left over for more typical science activities. Power wasn’t as much of a concern as it will become as the drill campaign progresses, but we did have to do some rearranging due to timing constraints. There are some activities that need to go at particular times, whether that be for lighting, heating, or to coincide with other observations. If you put enough of these together, there can be a lot of swapping back and forth and moving things around to get the perfect position for everything. It’s a bit like choreographing a big dance — activities have to come in at just the right time so they don’t step on anyone’s toes, and all the pieces come together to make a cohesive whole.
      In this metaphorical dance, our first movement is a short solo from ChemCam — just before the preload test we were able to squeeze in LIBS (laser spectroscopy) on a darker area of bedrock called “Blacksmith Peak.” The rest of the company joins ChemCam on the second sol. Mastcam comes in first to check out “Sam Mack Meadow,” an area of crushed material, followed by a quartet of environmental activities — a suprahorizon cloud movie, a tau and line-of-sight to see how dusty the atmosphere is, and a dust devil movie. It’s then back over to ChemCam, with LIBS on Kings Canyon and a long-distance observation of the yardang unit. Mastcam brings the dance to a close with their own documentation of Kings Canyon. For an encore, Mastcam makes one last appearance later that evening to do a sky survey.
      Written by Alex Innanen, atmospheric scientist at York University
      Share








      Details
      Last Updated Aug 01, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4259-4260: Kings Canyon Go Again!


      Article


      2 days ago
      3 min read Sols 4257-4258: A Little Nudge on Kings Canyon


      Article


      3 days ago
      2 min read Sols 4255-4256: Just Passing Through


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      ESA’s Earth Return Orbiter, the first spacecraft that will rendezvous and capture an object around another planet, passed a key milestone to bring the first Mars samples back to Earth.
      View the full article
  • Check out these Videos

×
×
  • Create New...