Jump to content

Recommended Posts

Posted
Sentinel-2C takes to the skies

The third Copernicus Sentinel-2 satellite launched today aboard the final Vega rocket from Europe’s Spaceport in French Guiana. Sentinel-2C will continue providing high-resolution data that is essential to Copernicus – Europe’s world leading Earth observation programme.

Sentinel-2C launched into orbit on 5 September at 03:50 CEST (4 September 22:50 local time) and separated from the Vega rocket at approximately 04:48 CEST.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Science in Orbit: Results Published on Space Station Research in 2024
      NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions.
      Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.
      Making stronger cement
      NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions.
      European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters
      The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices.
      A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation
      NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles.
      High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space
      The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance.
      Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness
      The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts.
      An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit
      The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities.
      The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

      Destiny Doran
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research Results
      Humans In Space
      Space Station Research and Technology
      Space Station Research and Technology Resources

      View the full article
    • By NASA
      Explore This Section Science Science Activation An Afternoon of Family Science… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      An Afternoon of Family Science and Rocket Exploration in Alaska
      On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of rocket exploration, hands-on activities, and stargazing inside a planetarium. This event was free and open to the public. Despite their frigid winter weather, 200 attendees were curious about the scientific endeavors of Alaska-based researchers alongside cutting-edge investigations conducted by NASA rocket scientists.
      Families and friends in attendance learned about two NASA rocket missions that would study the flickering and vanishing auroras: Ground Imaging to Rocket investigation of Auroral Fast Features (GIRAFF) and Black and Diffuse Aurora Science Surveyor (BaDASS). Visitors had an opportunity to sign up for text notifications related to the launch window. The planetarium presentations touch on Heliophysics Big Ideas that align with the three questions that drive NASA’s heliophysics research:
      What are the impacts of the changing sun on humanity? How do Earth, the solar system, and the heliosphere respond to changes on the sun? What causes the sun to vary? The event also offered sun-related hands-on activities provided by the University of Alaska Museum of the North.
      This event was offered to the community in association with the Science For Alaska Lecture Series and the 2025 NASA Sounding Rocket campaign. Every attendee left with something inspiring to think about. Parents and educators interested in learning more about auroras and do participatory science may check out NASA’s Aurorasaurus citizen science project.
      The Geophysical Institute at the University of Alaska Fairbanks is a Co-Investigating team for the NASA Heliophysics Education Activation Team (NASA HEAT), which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Aurora Educational Resource List by Aurorasaurus
      Families constructed and decorated their paper rockets. Katelin Avery It was so much fun! We are receiving rave reviews from our families and the surrounding community. THANK YOU AGAIN FOR COLLABORATING WITH US!

      Fairbanks BEST Homeschool
      Share








      Details
      Last Updated Feb 14, 2025 Editor Earth Science Division Editorial Team Related Terms
      Science Activation Citizen Science Heliophysics Explore More
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      1 day ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s deployable aperture cover — a visor-like sunshade that will help prevent unwanted light from entering the telescope — to the outer barrel assembly, another structure designed to shield the telescope from stray light in addition to keeping it at a stable temperature.
      Technicians at NASA’s Goddard Space Flight Center in Greenbelt, Md., recently integrated the deployable aperture cover to the outer barrel assembly for the agency’s Nancy Grace Roman Space Telescope.NASA/Chris Gunn “It’s been incredible to see these major components go from computer models to building and now integrating them,” said Sheri Thorn, an aerospace engineer working on Roman’s sunshade at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since it’s all coming together at Goddard, we get a front row seat to the process. We’ve seen it mature, kind of like watching a child grow up, and it’s a really gratifying experience.”
      The sunshade functions like a heavy-duty version of blackout curtains you might use to keep your room extra dark. It will make Roman more sensitive to faint light from across the universe, helping astronomers see dimmer and farther objects. Made of two layers of reinforced thermal blankets, the sunshade is designed to remain folded during launch and deploy after Roman is in space. Three booms will spring upward when triggered electronically, raising the sunshade like a page in a pop-up book.
      In this photo, technician Brenda Estavia is installing the innermost layer of the sunshade onto the deployable aperture cover structure of NASA’s Nancy Grace Roman Space Telescope. NASA/Jolearra Tshiteya The sunshade blanket has an inner and outer layer separated by about an inch, much like a double-paned window. “We’re prepared for micrometeoroid impacts that could occur in space, so the blanket is heavily fortified,” said Brian Simpson, Roman’s deployable aperture cover lead at NASA Goddard. “One layer is even reinforced with Kevlar, the same thing that lines bulletproof vests. By placing some space in between the layers we reduce the risk that light would leak in, because it’s unlikely that the light would pass through both layers at the exact same points where the holes were.”
       
      Over the course of a few hours, technicians meticulously joined the sunshade to the outer barrel assembly — both Goddard-designed components — in the largest clean room at NASA Goddard. The outer barrel assembly will help keep the telescope at a stable temperature and, like the sunshade, help shield the telescope from stray light and micrometeoroid impacts. It’s fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
       
      “Roman is made up of a lot of separate components that come together after years of design and fabrication,” said Laurence Madison, a mechanical engineer at NASA Goddard. “The deployable aperture cover and outer barrel assembly were built at the same time, and up until the integration the two teams mainly used reference drawings to make sure everything would fit together as they should. So the successful integration was both a proud moment and a relief!”
      This photo shows the deployable aperture cover for NASA’s Nancy Grace Roman Space Telescope as seen through the outer barrel assembly. Both components will help shield the telescope from stray light, improving Roman’s sensitivity to faint light from across the universe.NASA/Chris Gunn Both the sunshade and outer barrel assembly have been extensively tested individually, but now that they’re connected engineers are assessing them again. Following the integration, the team tested the sunshade deployment.
       
      “Since the sunshade was designed to deploy in space, the system isn’t actually strong enough to deploy itself in Earth’s gravity,” said Matthew Neuman, a mechanical engineer working on Roman’s sunshade at NASA Goddard. “So we used a gravity negation system to offset its weight and verified that everything works as expected.”
       
      Next, the components will undergo thermal vacuum testing together to ensure they will function as planned in the temperature and pressure environment of space. Then they’ll move to a shake test to assess their performance during the extreme vibrations they’ll experience during launch.
       
      Technicians will join Roman’s solar panels to the outer barrel assembly and sunshade this spring, and then integrate them with the rest of the observatory by the end of the year. 
       
      The mission has now passed a milestone called Key Decision Point-D, marking the official transition from the fabrication stage that culminated in the delivery of major components to the phase involving assembly, integration, testing, and launch. The Roman observatory remains on track for completion by fall 2026 and launch no later than May 2027.
       
      To virtually tour an interactive version of the telescope, visit:
       
      https://roman.gsfc.nasa.gov/interactive/
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Feb 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
      2 min read NASA Joins Telescope, Instruments to Roman Spacecraft
      Article 1 month ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 7 months ago View the full article
    • By NASA
      The ARCSTONE observatory is shown in low Earth orbit with the spectrometer viewing the Sun and Moon. The spacecraft rotates in order to view the Moon or the Sun. One of the most challenging tasks in remote sensing from space is achieving required instrument calibration accuracy on-orbit. The Moon is considered to be an excellent exoatmospheric calibration source. However, the current accuracy of the Moon as an absolute reference is limited to 5 – 10%, and this level of accuracy is inadequate to meet the challenging objective of Earth Science observations. ARCSTONE is a mission concept that provides a solution to this challenge. An orbiting spectrometer flying on a small satellite in low Earth orbit will provide lunar spectral reflectance with accuracy sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors.
      Learn More.
      View the full article
  • Check out these Videos

×
×
  • Create New...