Jump to content

Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A four-engine turboprop aircraft in a red and white livery takes off from a runway on its way to be modified into a hybrid electric aircraft. Other airplanes can be seen in the distance.
The Dash 7 aircraft that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project is seen taking off from Moses Lake, Washington en route to Seattle for a ceremony unveiling its new livery. The aircraft is currently operating with a traditional fuel-based propulsion system but will eventually be modified with a hybrid electric system.
NASA / David C. Bowman

Parked under the lights inside a hangar in Seattle, a hybrid electric research aircraft from electric motor manufacturer magniX showed off a new look symbolizing its journey toward helping NASA make sustainable aviation a reality.  

During a special unveiling ceremony hosted by magniX on Aug. 22, leaders from the company and NASA revealed the aircraft, with its new livery, to the public for the first time at King County International Airport, commonly known as Boeing Field.  

The aircraft is a De Havilland Dash 7 that was formerly used for carrying cargo. Working under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project, magniX will modify it to serve as a testbed for hybrid electric aircraft propulsion research.    

The company’s goal under EPFD is to demonstrate potential fuel savings and performance boosts with a hybrid electric system for regional aircraft carrying up to 50 passengers. These efforts will help reduce environmental impacts from aviation by lowering greenhouse gas emissions. 

This livery recognizes the collaborative effort focused on proving that hybrid electric flight for commercial aircraft is feasible. 

“We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.” 

Three men engage in a conversation inside a hollow cabin surrounded by various hardware, insulation, lights, and red boxes along the floor used for storing the aircraft’s battery packs.
Lee Noble, director for NASA’s Integrated Aviation Systems Program (right) and Robert Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate (middle) chat with an AeroTEC test pilot for the Dash 7. Battery packs are stored along the floor of the cabin for magniX’s hybrid electric flight demonstrations
NASA / David C. Bowman

Collaborative Effort   

NASA is collaborating with industry to modify existing planes with new electrified aircraft propulsion systems. These aircraft testbeds will help demonstrate the benefits of hybrid electric propulsion systems in reducing fuel burn and emissions for future commercial aircraft, part of NASA’s broader mission to make air travel more sustainable.  

“EPFD is about showing how regional-scale aircraft, through ground and flight tests, can be made more sustainable through electric technology that is available right now,” said Ben Loxton, vice president for magniX’s work on the EPFD project.  

Thus far, magniX has focused on developing a battery-powered engine and testing it on the ground to make sure it will be safe for work in the air. The company will now begin transitioning over to a new phase of the project — transforming the Dash 7 into a hybrid electric research vehicle.  

“With the recent completion of our preliminary design review and baseline flight tests, this marks a transition to the next phase, and the most exciting phase of the project: the modification of this Dash 7 with our magniX electric powertrain,” Loxton said.  

To make this possible, magniX is working with their airframe integrator AeroTEC to help modify and prepare the aircraft for flight tests that will take place out of Moses Lake, Washington. Air Tindi, which supplied the aircraft to magniX for this project, will help with maintenance and support of the aircraft during the testing phases.  

A four engine turboprop aircraft wrapped in a red and white livery with logos and names of each partner on the project sits under the lights inside an aircraft hangar. On the ground in front of the plane is an electric powertrain with an electric motor and battery pack that will soon be swapped out with one of the aircraft’s traditional engines to form a hybrid electric system.
The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.
NASA/David C. Bowman

Creating a Hybrid Electric Aircraft   

A typical hybrid electric propulsion system combines different sources of energy, such as fuel and electricity, to power an aircraft. For magniX’s demonstration, the modified Dash 7 will feature two electric engines fed by battery packs stored in the cabin, and two gas-powered turboprops.  

The work will begin with replacing one of the aircraft’s outer turboprop engines with a new, magni650-kilowatt electric engine – the base of its hybrid electric system. After testing those modifications, magniX will swap out the remaining outer turboprop engine for an additional electric one. 

Earlier this year, magniX and NASA marked the milestone completion of successfully testing the battery-powered engine at simulated altitude. Engineers at magniX are continuing ground tests of the aircraft’s electrified systems and components at NASA’s Electric Aircraft Testbed (NEAT) facility in Sandusky, Ohio.  

By rigorously testing these new technologies under simulated flight conditions, such as high altitudes and extreme temperatures, researchers can ensure each component operates safely before taking to the skies. 

The collaboration between EPFD, NASA, GE Aerospace, and magniX works to advance hybrid electric aircraft propulsion technologies for next-generation commercial aircraft in the mid-2030 timeframe. NASA is working with these companies to conduct two flight demonstrations showcasing different approaches to hybrid electric system design. 

Researchers will use data gathered from ground and flight tests to identify and reduce certification gaps, as well as inform the development of new standards and regulations for future electrified aircraft. 

“We at NASA are excited about EPFD’s potential to make aviation more sustainable,” Pearce said. “Hybrid electric propulsion on a megawatt scale accelerates U.S. progress toward its goal of net-zero greenhouse gas emissions by 2050, benefitting all who rely on air transportation every day.”

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As students head back to school, teachers have a new tool that brings NASA satellite data down to their earthly classrooms.
      The My NASA Data homepage categorizes content by areas of study called spheres and also Earth as a system. NASA/mynasadata.larc.nasa.gov For over 50 years of observing Earth, NASA’s satellites have collected petabytes of global science data (that’s millions and millions of gigabytes) – with terabytes more coming in by the day. Since 2004, the My NASA Data website has been developing ways for students and teachers of grades 3-12 to understand, and visualize NASA data, and to help incorporate those measurements into practical science lessons.
      “We have three different types of lesson plans, some of which are student-facing and some are teacher-facing,” said Angie Rizzi, My NASA Data task lead, based at NASA’s Langley Research Center in Hampton, Virginia. “Teachers can download complete lesson plans or display a wide variety of Earth data. There are also lessons written for students to interact with directly.”
      An image from My NASA Data’s Earth System Data Explorer visualization tool showing the monthly leaf index around the world as measured by NASA satellites in August 2020. Data parameters for this visualization were set to biosphere under the sphere dropdown and vegetation as a category.  NASA/mynasadata.larc.nasa.gov A key component of the My NASA Data site is the newly updated Earth System Data Explorer visualization tool, which allows users to access and download NASA Earth data. Educators can explore the data then create custom data tables, graphs, and plots to help students visualize the data. Students can create and investigate comparisons between  land surface temperatures, cloud cover, extreme heat, and a wide range of other characteristics for a specific location or region around the globe.
      An image from My NASA Data’s visualization tool showing various searchable categories under the atmosphere dataset selection. NASA/mynasadata.larc.nasa.gov “The Earth System Data Explorer tool has a collection of science datasets organized by different spheres of the Earth system,” explained Desiray Wilson, My NASA Data scientific programmer. The program highlights six areas of study: atmosphere, biosphere, cryosphere, geosphere, hydrosphere, and Earth as a system. “The data goes as far back as the 1980s, and we are getting more daily datasets. It’s really good for looking at historical trends, regional trends, and patterns.”
      My NASA Data had over one million site visits last year, with some of the most popular searches focusing on temperatures, precipitation, water vapor, and air quality.
      My NASA Data program leaders and instructors collaborating with educators from the North Carolina Space Grant at NASA’S Langley Research Center June 26, 2024. Teachers were at NASA Langley as part of the North Carolina Space Education Ambassadors (NCSEA) program and were given demonstrations of the My NASA Data website. NASA/David C. Bowman Natalie Macke has been teaching for 20 years and is a science teacher at Pascack Hills High School in Montvale, New Jersey. Teachers like Macke help shape the lessons on the site through internships with the My NASA Data team. Teachers’ suggestions were also incorporated to enhance the visualization tool by adding new features that now allow users to swipe between visual layers of data and make side-by-side comparisons. Users can also now click on a location to display latitude and longitude and variable data streamlining the previous site which required manual input of latitude and longitude.
      “The new visualization tool is very much a point-and-click layout like our students are used to in terms of just quickly selecting data they want to see,” said Macke. “Instantaneously, a map of the Earth comes up, or just the outline, and they can get the satellite view. So if they’re looking for a specific city, they can find the city on the map and quickly grab a dataset or multiple datasets and overlay it on the map to make visual comparisons.”
      Map of the East Coast of the United States from the My NASA Data visualization tool from August 2023 before adding layers of atmospheric satellite data. The image below shows the same map layered with atmospheric measurements.NASA/mynasadata.larc.nasa.gov The East Coast of the United States shown with monthly daytime surface (skin) temperatures from August 2023 overlayed from Earth-observing satellite data using the My NASA Data Earth System Data Explorer visualization tool. The image above shows the same region without the data layer added.NASA/mynasadata.larc.nasa.gov/ Even more valuable than creating visualizations for one specific lesson, elaborated Macke, is the opportunity My NASA Data provides for students to understand the importance of interpreting, verifying, and using datasets in their daily lives. This skill, she said, is invaluable, because it helps spread data literacy enabling users to look at data with a discriminating eye and learn to discern between assumptions and valid conclusions.
      “Students can relate the data map to literally what’s happening outside their window, showing them how NASA Earth system satellite data relates to real life,” said Macke. “Creating a data literate public – meaning they understand the context and framework of the data they are working with and realizing the connection between the data and the real world – hopefully will intrigue them to continue to explore and learn about the Earth and start asking questions. That’s what got me into science when I was a little kid.”
      Read More My NASA Data
      Earth System Data Explorer
      Join the My NASA Data Educator Community
      About the Author
      Charles G. Hatfield
      Earth Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Sep 16, 2024 Related Terms
      For Educators Aerosols Climate Change Clouds Earth Earth's Atmosphere For Kids and Students Grades 5 – 8 Grades 5 – 8 for Educators Grades 9 – 12 Grades 9-12 for Educators Grades K – 4 Grades K – 4 for Educators Learning Resources NASA STEM Projects Partner with NASA STEM Space Grant STEM Engagement at NASA Explore More
      3 min read NASA Mobilizes Resource for HBCU Scholars, Highlighted at Conference
      Article 4 hours ago 1 min read NASA Moon to Mars Architecture Art Challenge
      Article 4 days ago 5 min read NASA Finds Summer 2024 Hottest to Date
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      The My NASA Data homepage categorizes content by areas of study called spheres and also Earth as a system. View the full article
    • By NASA
      A NASA MITTIC participant during the competition’s on-site experience and Space Tank at NASA’s Johnson Space Center in Houston on Dec. 7, 2022. (Credit: Riley McClenaghan) NASA will spotlight its program to engage underrepresented and underserved students in science, technology, engineering, and math at the 2024 National Historically Black Colleges and Universities (HBCU) Week Conference in Philadelphia, from Sunday, Sept. 15, to Thursday, Sept. 19.
      As part of the White House’s initiative to advance educational equity and economic opportunities through HBCUs, NASA’s Minority University Research and Education Project (MUREP) provides HBCU scholars access to NASA technology, networks, training, resources, and partners. During the conference, NASA will host a MUREP Innovation and Tech Transfer Idea Competition (MITTIC), featuring a hackathon challenging students to develop creative and innovative solutions for the benefit of humanity.
      “NASA’s MUREP is delighted to continue our collaboration with the White House initiative on HBCU’s to elevate students’ learning experience,” said Keya Briscoe, manager, MUREP, NASA Headquarters in Washington. “We are enthusiastic about the fresh insights and innovative solutions that the scholars will develop at the MITTIC hackathon, which provides an opportunity to showcase the depth and breadth of their academic and professional excellence.”
      The MITTIC HBCU hackathon concentrates on using NASA technologies to address various challenges common to HBCU campuses. The scholars will be divided into teams which will utilize NASA technology to address the challenge they select. Each team will pitch their concepts to a panel of subject matter experts.
      The winning team will receive a cash prize provided by MITTIC’s partner, JP Morgan Chase (JPMC), in collaboration with the JPMC Chief Technology Office, Career and Skills Development Office, and Advancing Black Pathways Group. The remaining HBCU hackathon teams will be able to submit their proposals to the fall or spring MITTIC Space2Pitch Competitions taking place at NASA’s Johnson Space Center in Houston.
      To further NASA’s initiative of promoting engagement and inclusion, the scholars will have the opportunity to interact with NASA exhibits to learn more about different career paths with NASA. In addition, a viewing of the Color of Space will show, highlighting the life stories of seven current and former Black astronauts.
      Through the HBCU Scholar Recognition Program, the White House Initiative annually recognizes students from HBCUs for their accomplishments in academics, leadership, and civic engagement. Over the course of an academic school year, HBCU scholars participate in professional development through monthly classes and have access to a network of public and private partners.
      “NASA’s unwavering commitment to provide our nation’s HBCUs with opportunity to participate in the space enterprise is invaluable to our institutions and our nation,” said Dietra Trent, executive director of the White House Initiative on HBCUs. “The initiative proudly solutes NASA for their relentless support and we look forward to having them again as a valued partner for the 2024 HBCU Week Conference and HBCU Scholar Recognition Program. By fostering innovation and expanding opportunities in STEM, NASA is empowering the next generation of diverse leaders to reach for the stars and beyond.”
      Through their relationships with NASA, community-based organizations, and other public and private partners, HBCU scholars have the opportunity to strive for their education and career potentials.  
      To learn more about NASA and agency programs, visit:
      https://www.nasa.gov
      View the full article
    • By NASA
      Manuel Retana arrived in the U.S. at 15 years old, unable to speak English and with nothing but a dream and $200 in his pocket. Now, he plays a crucial role implementing life support systems on spacecraft that will carry humans to the Moon and, eventually, Mars—paving the way for the next frontier of space exploration. 

      A project manager for NASA’s Johnson Space Center Life Support Systems Branch in Houston, Retana helps to ensure astronaut safety aboard the International Space Station and for future Artemis missions. His work involves tracking on-orbit technical issues, managing the cost and schedule impacts of flight projects, and delivering emergency hardware. 
      Manuel Retana stands in front of NASA’s Space Launch System rocket at Kennedy Space Center in Florida. One of his most notable achievements came during the qualification of the Orion Smoke Eater Filter for the Artemis II and III missions. The filter is designed to remove harmful gases and particulates from the crew cabin in the event of a fire inside the spacecraft. Retana was tasked with creating a cost-effective test rig – a critical step for making the filter safe for flight. 

      Retana’s philosophy is simple: “Rockets do not build themselves. People build rockets, and your ability to work with people will define how well your rocket is built.” 

      Throughout his career, Retana has honed his soft skills—communication, leadership, collaboration, and conflict resolution—to foster an environment of success. 

      Retana encourages his colleagues to learn new languages and share their unique perspectives. He even founded NASA’s first Mariachi ensemble, allowing him to share his cultural heritage in the workplace. 

      He believes diversity of thought is a key element in solving complex challenges as well as creating an environment where everyone feels comfortable sharing their perspectives. 

      “You need to be humble and have a willingness to always be learning,” he said. “What makes a strong team is the fact that not everyone thinks the same way.” 
      Manuel Retana, center, performs with the Mariachi Ensemble group at NASA’s Johnson Space Center in Houston. For the future of space exploration, Retana is excited about the democratization of space, envisioning a world where every country has the opportunity to explore. He is eager to see humanity reach the Moon, Mars, and beyond, driven by the quest to answer the universe’s most enigmatic questions. 

      To the Artemis Generation, he says, “Never lose hope, and it is never too late to start following your dreams, no matter how far you are.” 
      View the full article
    • By NASA
      Credit: NASA NASA has awarded the NASA Academic Mission Services 2 (NAMS-2) contract to Crown Consulting Inc., of Arlington, Virginia, to provide the agency’s Ames Research Center in California’s Silicon Valley, aeronautics and exploration technology research and development support.
      NAMS-2 is a single award hybrid cost-plus-fixed-fee indefinite-delivery indefinite-quantity contract with a maximum potential value of $121 million. The contract begins Tuesday, Oct. 1, 2024, with a 60-day phase-in period, followed by a two-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support a broad scope of scientific research and development of new and emerging capabilities and technologies associated with air traffic management, advanced technology, nanoelectronics, and prototype software in support of the Aeronautics Directorate and the Exploration Technology Directorate at NASA Ames. The work also will focus on the improvement of aircraft and airspace safety, as well as the transition of advanced aeronautics technologies into future air vehicles.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Roxana Bardan
      Headquarters, Washington
      202-358-1600
      roxana.bardan@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      rachel.hoover@nasa.gov
      650-604-4789
      Share
      Details
      Last Updated Sep 13, 2024 LocationAmes Research Center View the full article
    • By Space Force
      Secretary of Defense Lloyd J. Austin III announced seven initiatives to improve the quality of life for service members and their families.
      View the full article
  • Check out these Videos

×
×
  • Create New...