Jump to content

La NASA invita a los medios al lanzamiento de Europa Clipper


NASA

Recommended Posts

  • Publishers
A close up image of a set of massive solar arrays measuring about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high on NASA’s Europa Clipper spacecraft inside the agency’s Payload Hazardous Servicing Facility at Kennedy Space Center in Florida.
Técnicos ponen a prueba un conjunto de enormes paneles solares que miden aproximadamente 14,2 metros de largo y 4,1 metros de alto para la nave espacial Europa Clipper de la NASA, dentro de la Instalación de servicio de carga peligrosa de la agencia en el Centro Espacial Kennedy en Florida el 7 de agosto.
Crédito: NASA/Kim Shiflett

Read this release in English here.

La NASA y SpaceX tienen planificado que la ventana para el lanzamiento de la misión Europa Clipper se abra el jueves 10 de octubre. Esta misión ayudará a los científicos a determinar si una de las lunas heladas de Júpiter podría albergar vida. Esta misión de la NASA despegará a bordo de un cohete Falcon Heavy de SpaceX, desde el Complejo de Lanzamientos 39A en el Centro Espacial Kennedy de la NASA en Florida.

Europa Clipper llevará a bordo nueve instrumentos y un experimento científico sobre gravedad para recopilar mediciones detalladas mientras se encuentra en órbita alrededor de Júpiter y realiza varios sobrevuelos cercanos de su luna Europa. Las investigaciones sugieren que, debajo de la corteza de hielo de Europa, existe un océano que tiene dos veces el volumen de todos los océanos de la Tierra.

Los medios de comunicación interesados en cubrir el lanzamiento de Europa Clipper deben solicitar una acreditación de prensa. Los plazos para la acreditación de los medios son los siguientes:

  • Los ciudadanos estadounidenses que representen a medios de comunicación nacionales o internacionales deben solicitar su acreditación antes de las 11:59 p.m. hora del este del viernes 27 de septiembre.
  • Los representantes de medios internacionales con ciudadanía de otros países deben presentar su solicitud antes de las 11:59 p.m. hora del este del viernes 20 de septiembre.

Los medios de comunicación que requieran arreglos logísticos especiales, tales como espacio para camiones de transmisión satelital, tiendas de campaña o conexiones eléctricas, deben escribir por correo electrónico a ksc-media-accreditat@mail.nasa.gov antes del 1 de octubre.

Una copia del reglamento de la NASA para la acreditación de medios está disponible en línea (en inglés). Si tienes preguntas sobre tu acreditación, por favor envía un correo electrónico a ksc-media-accreditat@mail.nasa.gov. Para otras preguntas sobre la misión, por favor comunícate con la sala de prensa del Centro Espacial Kennedy al teléfono 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si deseas solicitar entrevistas en español, comunícate con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.

Los medios de comunicación acreditados tendrán la oportunidad de participar en una serie de sesiones informativas previas al lanzamiento y entrevistas con el personal clave de la misión, incluyendo una sesión informativa la semana del 9 de septiembre. La NASA comunicará detalles adicionales sobre el programa de eventos para los medios a medida que se acerque la fecha de lanzamiento.

La NASA también publicará actualizaciones sobre los preparativos para el lanzamiento de la nave espacial en el blog (en inglés) de Europa Clipper de la NASA.

El principal objetivo científico de Europa Clipper es determinar si existen lugares debajo de la superficie de Europa que pudieran sustentar la vida. Los tres objetivos científicos principales de la misión son comprender la naturaleza de la capa de hielo y el océano que está debajo de ella, junto con la composición y la geología de esta luna. La detallada exploración de Europa que lleve a cabo esta misión ayudará a los científicos a comprender mejor el potencial astrobiológico de los mundos habitables más allá de nuestro planeta.

Administrado por Caltech en Pasadena, California, el Laboratorio de Propulsión a Chorro (JPL, por sus siglas en inglés) de la NASA en el sur de California lidera el desarrollo de la misión Europa Clipper, en asociación con el Laboratorio de Física Aplicada Johns Hopkins (APL, por sus siglas en inglés) en Laurel, Maryland, para la Dirección de Misiones Científicas de la NASA en Washington. APL diseñó el cuerpo principal de la nave espacial en colaboración con JPL y el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. La Oficina del Programa de Misiones Planetarias en el Centro de Vuelo Espacial Marshall de la NASA en Huntsville, Alabama, gestiona la ejecución del programa de la misión Europa Clipper.

El Programa de Servicios de Lanzamiento de la NASA, con sede en el centro Kennedy, gestiona el servicio de lanzamiento de la nave espacial Europa Clipper.

Para obtener más detalles sobre la misión y actualizaciones sobre los preparativos del lanzamiento, visita el sitio web (en inglés):

https://science.nasa.gov/mission/europa-clipper

Leejay Lockhart
Centro Espacial Kennedy, Florida
321-747-8310
leejay.lockhart@nasa.gov

Karen Fox / Alana Johnson
Sede de la NASA, Washington
202-358-1600 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

María José Viñas
Sede de la NASA, Washington
240-458-0248
maria-jose.vinasgarcia@nasa.gov

Julian Coltre
Sede de la NASA, Washington
202-358-1100
Julian.n.coltre@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept of NASA’s Europa Clipper shows the spacecraft in silhouette against Europa’s surface, with the magnetometer boom fully deployed at top and the antennas for the radar instrument extending out from the solar arrays.NASA/JPL-Caltech Headed to Jupiter’s moon Europa, the spacecraft is operating without a hitch and will reach Mars in just three months for a gravity assist.
      NASA’s Europa Clipper, which launched Oct. 14 on a journey to Jupiter’s moon Europa, is already 13 million miles (20 million kilometers) from Earth. Two science instruments have deployed hardware that will remain at attention, extending out from the spacecraft, for the next decade — through the cruise to Jupiter and the entire prime mission.
      A SpaceX Falcon Heavy rocket launched it away from Earth’s gravity, and now the spacecraft is zooming along at 22 miles per second (35 kilometers per second) relative to the Sun.
      Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission. It will travel 1.8 billion miles (2.9 billion kilometers) to arrive at Jupiter in 2030 and in 2031 will begin a series of 49 flybys, using a suite of instruments to gather data that will tell scientists if the icy moon and its internal ocean have the conditions needed to harbor life.
      For now, the information mission teams are receiving from the spacecraft is strictly engineering data (the science will come later), telling them how the hardware is operating. Things are looking good. The team has a checklist of actions the spacecraft needs to take as it travels deeper into space. Here’s a peek:
      Boom Times
      Shortly after launch, the spacecraft deployed its massive solar arrays, which extend the length of a basketball court. Next on the list was the magnetometer’s boom, which uncoiled from a canister mounted on the spacecraft body, extending a full 28 feet (8.5 meters).
      To confirm that all went well with the boom deployment, the team relied on data from the magnetometer’s three sensors. Once the spacecraft is at Jupiter, these sensors will measure the magnetic field around Europa, both confirming the presence of the ocean thought to be under the moon’s icy crust and telling scientists about its depth and salinity.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This animation shows how the boom of Europa Clipper’s magnetometer deployed — while the spacecraft was in flight — to its full length of 28 feet (8.5 meters). NASA/JPL-Caltech On the Radar
      After the magnetometer, the spacecraft deployed several antennas for the radar instrument. Now extending crosswise from the solar arrays, the four high-frequency antennas form what look like two long poles, each measuring 57.7 feet (17.6 meters) long. Eight rectangular very-high-frequency antennas, each 9 feet (2.76 meters) long, were also deployed — two on the two solar arrays.
      “It’s an exciting time on the spacecraft, getting these key deployments done,” said Europa Clipper project manager Jordan Evans of NASA’s Jet Propulsion Laboratory in Southern California. “Most of what the team is focusing on now is understanding the small, interesting things in the data that help them understand the behavior of the spacecraft on a deeper level. That’s really good to see.”
      Instrument Checkout
      The remaining seven instruments will be powered on and off through December and January so that engineers can check their health. Several instruments, including the visible imager and the gas and dust mass spectrometers, will keep their protective covers closed for the next three or so years to guard against potential damage from the Sun during Europa Clipper’s time in the inner solar system.
      Mars-Bound
      Once all the instruments and engineering subsystems have been checked out, mission teams will shift their focus to Mars. On March 1, 2025, Europa Clipper will reach Mars’ orbit and begin to loop around the Red Planet, using the planet’s gravity to gain speed. (This effect is similar to how a ball thrown at a moving train will bounce off the train in another direction at a higher speed.) Mission navigators already have completed one trajectory correction maneuver, as planned, to get the spacecraft on the precise course.
      At Mars, scientists plan to turn on the spacecraft’s thermal imager to capture multicolored images of Mars as a test operation. They also plan to collect data with the radar instrument so engineers can be sure it’s operating as expected.
      The spacecraft will perform another gravity assist in December 2026, swooping by Earth before making the remainder of the long journey to the Jupiter system. At that time, the magnetometer will measure Earth’s magnetic field, calibrating the instrument.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper
      8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2024-163
      Share
      Details
      Last Updated Nov 25, 2024 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Explore More
      5 min read NASA Ocean World Explorers Have to Swim Before They Can Fly
      Article 5 days ago 5 min read NASA’s Curiosity Mars Rover Takes a Last Look at Mysterious Sulfur
      Article 7 days ago 4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System
      The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has captured the most detailed portrait yet of gases flowing within Cygnus X-3, one of the most studied sources in the X-ray sky.
      Cygnus X-3 is a binary that pairs a rare type of high-mass star with a compact companion — likely a black hole.
      Cygnus X-3 is a high-mass binary consisting of a compact object (likely a black hole) and a hot Wolf-Rayet star. This artist’s concept shows one interpretation of the system. High-resolution X-ray spectroscopy indicates two gas components: a heavy background outflow, or wind, emanating from the massive star and a turbulent structure — perhaps a wake carved into the wind — located close to the orbiting companion. As shown here, a black hole’s gravity captures some of the wind into an accretion disk around it, and the disk’s orbital motion sculpts a path (yellow arc) through the streaming gas. During strong outbursts, the companion emits jets of particles moving near the speed of light, seen here extending above and below the black hole. NASA’s Goddard Space Flight Center “The nature of the massive star is one factor that makes Cygnus X-3 so intriguing,” said Ralf Ballhausen, a postdoctoral associate at the University of Maryland, College Park, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s a Wolf-Rayet star, a type that has evolved to the point where strong outflows called stellar winds strip gas from the star’s surface and drive it outward. The compact object sweeps up and heats some of this gas, causing it to emit X-rays.”
      A paper describing the findings, led by Ballhausen, will appear in a future edition of The Astrophysical Journal.
      “For XRISM, Cygnus X-3 is a Goldilocks target — its brightness is ‘just right’ in the energy range where XRISM is especially sensitive,” said co-author Timothy Kallman, an astrophysicist at NASA Goddard. “This unusual source has been studied by every X-ray satellite ever flown, so observing it is a kind of rite of passage for new X-ray missions.”
      XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed the mission’s microcalorimeter spectrometer instrument, named Resolve.
      Observing Cygnus X-3 for 18 hours in late March, Resolve acquired a high-resolution spectrum that allows astronomers to better understand the complex gas dynamics operating there. These include outflowing gas produced by a hot, massive star, its interaction with the compact companion, and a turbulent region that may represent a wake produced by the companion as it orbits through the outrushing gas.
      XRISM’s Resolve instrument has captured the most detailed X-ray spectrum yet acquired of Cygnus X-3. Peaks indicate X-rays emitted by ionized gases, and valleys form where the gases absorb X-rays; many lines are also shifted to both higher and lower energies by gas motions. Top: The full Resolve spectrum, from 2 to 8 keV (kiloelectron volts), tracks X-rays with thousands of times the energy of visible light. Some lines are labeled with the names of the elements that produced them, such as sulfur, argon, and calcium, along with Roman numerals that refer to the number of electrons these atoms have lost. Bottom: A zoom into a region of the spectrum often dominated by features produced by transitions in the innermost electron shell (K shell) of iron atoms. These features form when the atoms interact with high-energy X-rays or electrons and respond by emitting a photon at energies between 6.4 and 7 keV. These details, clearly visible for the first time with XRISM’s Resolve instrument, will help astronomers refine their understanding of this unusual system. JAXA/NASA/XRISM Collaboration In Cygnus X-3, the star and compact object are so close they complete an orbit in just 4.8 hours. The binary is thought to lie about 32,000 light-years away in the direction of the northern constellation Cygnus.
      While thick dust clouds in our galaxy’s central plane obscure any visible light from Cygnus X-3, the binary has been studied in radio, infrared, and gamma-ray light, as well as in X-rays.
      The system is immersed in the star’s streaming gas, which is illuminated and ionized by X-rays from the compact companion. The gas both emits and absorbs X-rays, and many of the spectrum’s prominent peaks and valleys incorporate both aspects. Yet a simple attempt at understanding the spectrum comes up short because some of the features appear to be in the wrong place.
      That’s because the rapid motion of the gas displaces these features from their normal laboratory energies due to the Doppler effect. Absorption valleys typically shift up to higher energies, indicating gas moving toward us at speeds of up to 930,000 mph (1.5 million kph). Emission peaks shift down to lower energies, indicating gas moving away from us at slower speeds.
      Some spectral features displayed much stronger absorption valleys than emission peaks. The reason for this imbalance, the team concludes, is that the dynamics of the stellar wind allow the moving gas to absorb a broader range of X-ray energies emitted by the companion. The detail of the XRISM spectrum, particularly at higher energies rich in features produced by ionized iron atoms, allowed the scientists to disentangle these effects.
      “A key to acquiring this detail was XRISM’s ability to monitor the system over the course of several orbits,” said Brian Williams, NASA’s project scientist for the mission at Goddard. “There’s much more to explore in this spectrum, and ultimately we hope it will help us determine if Cygnus X-3’s compact object is indeed a black hole.”
      XRISM is a collaborative mission between JAXA and NASA, with participation by ESA. NASA’s contribution includes science participation from CSA (Canadian Space Agency).  

      Download additional images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 25, 2024 Related Terms
      Black Holes Electromagnetic Spectrum Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Stars Stellar-mass Black Holes The Universe X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Caption: Firefly Aerospace’s Blue Ghost Mission One lander, seen here, will carry 10 NASA science and technology instruments to the Moon’s near side when it launches from NASA’s Kennedy Space Center in Florida on a SpaceX Falcon 9 rocket, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. Credit: Firefly Aerospace Media accreditation is open for the next delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign for the benefit of humanity. A six-day launch window opens no earlier than mid-January 2025 for the first Firefly Aerospace launch to the lunar surface.

      The Blue Ghost flight, carrying 10 NASA science and technology instruments, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Media prelaunch and launch activities will take place at NASA Kennedy.

      Attendance for this launch is open to U.S. citizens and international media. International media must apply by Monday, Dec. 9, and U.S. media must apply by Thursday, Jan. 2. Media interested in participating in launch activities must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support such as space for satellite trucks, tents, or electrical connections, please send an email by Thursday, Jan. 2, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      The company named the mission Ghost Riders in the Sky. It will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the lunar near side. The mission will carry NASA investigations and first-of-their-kind technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. This includes payloads testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured also benefits humanity by providing insights into how space weather and other cosmic forces impact Earth.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights.

      As part of its Artemis campaign, NASA is working with multiple U.S. companies to deliver science and technology to the lunar surface. These companies are eligible to bid on task orders to deliver NASA payloads to the Moon. The task order includes payload integration and operations and launching from Earth and landing on the surface of the Moon. Existing CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.

      For more information about the agency’s Commercial Lunar Payload Services initiative, see:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov   

      Wynn Scott / Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Nov 25, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
    • By NASA
      5 Min Read Hats Off to NASA’s Webb: Sombrero Galaxy Dazzles in New Image
      NASA’s James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. Credits:
      NASA, ESA, CSA, STScI In a new image from NASA’s James Webb Space Telescope, a galaxy named for its resemblance to a broad-brimmed Mexican hat appears more like an archery target.
      In Webb’s mid-infrared view of the Sombrero galaxy, also known as Messier 104 (M104), the signature, glowing core seen in visible-light images does not shine, and instead a smooth inner disk is revealed. The sharp resolution of Webb’s MIRI (Mid-Infrared Instrument) also brings into focus details of the galaxy’s outer ring, providing insights into how the dust, an essential building block for astronomical objects in the universe, is distributed. The galaxy’s outer ring, which appeared smooth like a blanket in imaging from NASA’s retired Spitzer Space Telescope, shows intricate clumps in the infrared for the first time.
      Image A: Sombrero Galaxy (MIRI Image)
      NASA’s James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. This image includes filters representing 7.7-micron light as blue, 11.3-micron light as green, and 12.8-micron light as red. NASA, ESA, CSA, STScI Image B: Sombrero Galaxy (Hubble and Webb Image)
      Image Before/After Researchers say the clumpy nature of the dust, where MIRI detects carbon-containing molecules called polycyclic aromatic hydrocarbons, can indicate the presence of young star-forming regions. However, unlike some galaxies studied with Webb, including Messier 82, where 10 times as many stars are born than the Milky Way galaxy, the Sombrero galaxy is not a particular hotbed of star formation. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year.
      Even the supermassive black hole, also known as an active galactic nucleus, at the center of the Sombrero galaxy is rather docile, even at a hefty 9-billion-solar masses. It’s classified as a low luminosity active galactic nucleus, slowly snacking on infalling material from the galaxy, while sending off a bright, relatively small, jet.
      Also within the Sombrero galaxy dwell some 2,000 globular clusters, collections of hundreds of thousands of old stars held together by gravity. This type of system serves as a pseudo laboratory for astronomers to study stars — thousands of stars within one system with the same age, but varying masses and other properties is an intriguing opportunity for comparison studies.
      In the MIRI image, galaxies of varying shapes and colors litter the background of space. The different colors of these background galaxies can tell astronomers about their properties, including how far away they are.
      The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.
      Video: Sombrero Galaxy Fade (Spitzer, Webb, Hubble)
      A Bright Future Ahead
      Stunning images like this, and an array of discoveries in the study of exoplanets, galaxies through time, star formation, and our own solar system, are still just the beginning. Recently, scientists from all over the world applied for observation time with Webb during its fourth year of science operations, which begins in July 2025.
      General Observer time with Webb is more competitive than ever. A record-breaking 2,377 proposals were submitted by the Oct. 15, 2024, deadline, requesting about 78,000 hours of observation time. This is an oversubscription rate, the ratio defining the observation hours requested versus the actual time available in one year of Webb’s operations, of around 9 to 1.
      The proposals cover a wide array of science topics, with distant galaxies being among the most requested observation time, followed by exoplanet atmospheres, stars and stellar populations, then exoplanet systems.
      The Space Telescope Science Institute manages the proposal and program selection process for NASA. The submissions will now be evaluated by a Telescope Allocation Committee, a group of hundreds of members of the worldwide astronomical community, on a dual-anonymous basis, with selections announced in March 2025.
      While time on Webb is limited, data from all of Webb’s programs is publicly archived, immediately after it’s taken, or after a time of exclusive access, in the Mikulski Archive for Space Telescopes (MAST) so it can be used by anyone in the world.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Article: Types of Galaxies
      Video: Celestial Tour: Different types of galaxies
      Article: Sombrero Galaxy’s Halo Suggests Turbulent Past
      More images: Images of the Sombrero Galaxy in different types of light
      Video: Sonification of Sombrero Galaxy images
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Messier 104 (The Sombrero Galaxy)


      Hubble easily resolves some of the Sombrero galaxy’s roughly 2,000 globular clusters.

      Share








      Details
      Last Updated Nov 25, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Spiral Galaxies The Universe View the full article
    • By NASA
      NASA Read this story in English here.
      La Estación Espacial Internacional es el hogar de la humanidad en el espacio y una estación de investigación que gira en órbita sobre la Tierra a unos 400 kilómetros (250 millas) de altura. La NASA y sus socios internacionales han mantenido una presencia humana continua a bordo de la estación espacial durante más de 24 años, haciendo investigaciones que no es posible realizar en la Tierra.
      La gente que vive y trabaja a bordo de este laboratorio en microgravedad también forma parte de las investigaciones que se llevan a cabo, y ellos ayudan a abordar complejos problemas de la salud humana en la Tierra y preparan a la humanidad para viajar más lejos que nunca, incluyendo la Luna y Marte.
      Estas son algunas de las preguntas frecuentes sobre cómo la NASA y su equipo de médicos, psicólogos, nutricionistas, científicos del ejercicio y otros profesionales especializados garantizan la salud y la condición física de los astronautas a bordo del laboratorio orbital.
      ¿Cuánto dura una estadía típica a bordo de la Estación Espacial Internacional?
      Una misión típica a la Estación Espacial Internacional dura unos seis meses, pero puede variar en función del calendario de visitas de naves espaciales, las prioridades de la misión y otros factores. Los astronautas de la NASA también han permanecido a bordo de la estación espacial durante períodos de tiempo más largos. Estas se conocen como misiones de larga duración, y misiones anteriores de este tipo han proporcionado a la NASA cuantiosos datos sobre los vuelos espaciales a largo plazo y sus efectos en el cuerpo humano, los cuales la agencia aplica a cualquier misión tripulada.
      Durante las misiones de larga duración, el equipo de profesionales médicos de la NASA se centra en optimizar la salud física y conductual de los astronautas y su desempeño, para ayudar a garantizar el éxito de la misión. Estos esfuerzos también ayudan a la NASA a prepararse para futuras misiones humanas a la Luna, Marte y más allá.
      ¿Cómo mantiene la NASA saludables a los astronautas mientras están en el espacio?
      La NASA tiene un equipo de médicos, psicólogos y otros especialistas en tierra que se dedican a dar apoyo a la salud y el bienestar de los astronautas antes, durante y después de cada misión espacial. La NASA asigna a cada tripulación médicos con formación especializada en medicina espacial, denominados médicos de la tripulación de vuelo, una vez que la tripulación ha sido seleccionada para una misión. Los médicos de la tripulación de vuelo supervisan la atención de salud y la capacitación médica mientras los miembros de la tripulación se preparan para su misión, y monitorean la salud de la tripulación antes, durante y después de su misión a la estación espacial.
      ¿Cómo apoya la NASA el bienestar mental y emocional de sus astronautas mientras están en el espacio?
      El equipo de salud conductual de la NASA proporciona servicios de apoyo psicológico determinados de manera individual para los miembros de la tripulación y sus familias durante cada misión. Garantizar que los astronautas puedan mantener su vitalidad en entornos extremos comienza tan pronto se inicia el proceso de selección de astronautas, en el que los candidatos son evaluados en capacidades como su adaptabilidad y resiliencia. Los astronautas reciben una formación exhaustiva que les ayuda a utilizar herramientas y tratamientos de autoevaluación para gestionar su salud conductual. La NASA también ofrece capacitación en destrezas expedicionarias a fin de preparar a cada astronauta para las misiones en capacidades importantes, como los cuidados personales y el cuidado del equipo, las comunicaciones y las destrezas de liderazgo y colaboración.
      Para ayudar a mantener la motivación y la moral a bordo de la estación espacial, los astronautas pueden enviar correos electrónicos, hacer llamadas y videoconferencias con sus familiares y amigos, recibir paquetes personales enviados a bordo de las misiones de reabastecimiento de carga de la NASA y sostener teleconferencias con un psicólogo, si es necesario.
      ¿Cómo afecta la microgravedad a la salud física de los astronautas?
      En microgravedad, sin la carga continua de la gravedad de la Tierra, se producen muchos cambios en el cuerpo humano. La NASA entiende muchas de las respuestas del sistema humano al entorno espacial, entre las que se cuentan las adaptaciones a la densidad ósea, la salud muscular, sensitivomotora y cardiovascular, pero todavía queda mucho por aprender. Estos efectos de los vuelos espaciales varían de uno a otro astronauta, por lo que los médicos de la tripulación de vuelo de la NASA monitorean regularmente la salud de cada miembro de la tripulación durante una misión e individualizan las rutinas de dieta y acondicionamiento físico para dar prioridad a la salud y el estado físico durante su permanencia en el espacio.
      ¿Por qué los astronautas hacen ejercicio en el espacio?
      Todos los astronautas a bordo del laboratorio en órbita participan en planes de ejercicio específicamente diseñados y similares a los de la Tierra. Para mantener su fuerza y resistencia, los miembros de la tripulación tienen programadas dos horas y media de ejercicio diario para sustentar su salud muscular, ósea, aeróbica y sensitivomotora. El equipo actual a bordo de la estación espacial incluye el Dispositivo Avanzado de Ejercicio Resistivo (ARED, por sus siglas en inglés), que imita el levantamiento de pesas; una cinta de correr, llamada T2; y el Cicloergómetro con Sistema de Aislamiento y Estabilización de Vibraciones (CEVIS, por sus siglas en inglés) para el ejercicio cardiovascular.
      ¿Qué función cumplen la alimentación y la nutrición en el apoyo a la salud de los astronautas?
      La nutrición desempeña un papel fundamental en el mantenimiento de la salud y el rendimiento óptimo de un astronauta antes, durante y después de su misión. La alimentación también cumple un rol psicosocial durante la prolongada estancia de un astronauta a bordo de la estación espacial. Los expertos que trabajan en el Laboratorio de Sistemas de Alimentación Espacial de la NASA en el Centro Johnson en Houston desarrollan alimentos nutritivos y apetitosos. Los miembros de la tripulación tienen pueden complementar las opciones del menú estándar con sus platos favoritos personales, que pueden brindar un sabor hogareño.
      NASA ¿Cómo sabe la NASA si los astronautas están recibiendo los nutrientes adecuados?
      Los nutricionistas y científicos de bioquímica nutricional de la NASA determinan los nutrientes (vitaminas, minerales, calorías) que los astronautas necesitan mientras están en el espacio. Este equipo lleva el registro de lo que come cada miembro de la tripulación mediante un programa de seguimiento basado en computadoras de tableta, que cada astronauta completa a diario. Los datos de la aplicación se envían semanalmente a los nutricionistas para controlar la ingesta dietética. El análisis de las muestras de sangre y orina de los astronautas que son tomadas antes, durante y después de las misiones espaciales es una parte crucial del estudio de cómo responden sus cuerpos a las condiciones únicas de los vuelos espaciales. Estas muestras proporcionan información valiosa sobre cómo cada astronauta se adapta a la microgravedad, la radiación y otros factores que afectan la fisiología humana en el espacio.
      ¿Cómo se entrenan los astronautas para trabajar juntos mientras están en el espacio?
      Además de su capacitación técnica, los astronautas participan en la formación de destrezas de trabajo en equipo. Aprenden destrezas eficaces para la vida en grupo y cómo cuidarse y apoyarse unos a otros. Debido a su naturaleza remota y aislada, los vuelos espaciales de larga duración pueden dificultar el trabajo en equipo. Los astronautas deben mantener la conciencia situacional e implementar el programa de vuelo en un entorno en constante cambio. Por lo tanto, la comunicación efectiva es fundamental cuando se trabaja en equipo a bordo de la estación y con diferentes equipos de soporte en tierra. Los astronautas también deben ser capaces de comunicar información compleja a personas con diferente formación profesional. En última instancia, los astronautas son personas que viven y trabajan juntas a bordo de la estación y deben ser capaces de llevar a cabo un trabajo altamente técnico y resolver cualquier problema interpersonal que pueda surgir.
      ¿Qué sucede si hay una emergencia médica a bordo de la estación espacial?
      Todos los astronautas reciben capacitación médica y tienen contacto regular con un equipo de médicos que vigilan de cerca su salud desde tierra. La NASA también mantiene una farmacia bien surtida y un conjunto de equipamientos médicos a bordo de la estación espacial para atender diversas afecciones y lesiones. Si una emergencia médica requiere volver a la Tierra, la tripulación regresará en la nave espacial que fue llevada a bordo para recibir atención médica urgente en tierra.
      NASA/Bill Ingalls Puedes obtener más información sobre la Dirección de Salud y Desempeño Humano de la NASA (en inglés) en:
      www.nasa.gov/hhp
      View the full article
  • Check out these Videos

×
×
  • Create New...