Jump to content

40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery


Recommended Posts

  • Publishers
Posted

On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter.

Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight Discovery arrives at NASA’s Kennedy Space Center in Florida
Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.

Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California.

STS-41D crew patch Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik Payloads installed in Discovery’s payload bay for the STS-41D mission
Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2.

To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows.

First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida The June 26 launch abort
Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort.

The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day.

The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test Liftoff of Discovery on the STS-41D mission
Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission.

Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment.

The deployment of the SBS-4 satellite during STS-41D The deployment of the Leasat-2 satellite during STS-41D The deployment of the Telstar 3C satellite during STS-41D
The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D.

Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice.

Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System Henry “Hank” W. Hartsfield loading film into the IMAX® camera The OAST-1 Solar Array Experiment extended from Discovery’s payload bay
Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay.

On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times.

The STS-41D crew pose in Discovery’s middeck Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission
Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. 

By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia.

Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live 19th September Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In this infrared photograph, the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, beams its eight-laser beacon to the Deep Space Optical Communications flight laser transceiver aboard NASA’s Psyche spacecraft.NASA/JPL-Caltech The project has exceeded all of its technical goals after two years, setting up the foundations of high-speed communications for NASA’s future human missions to Mars.
      NASA’s Deep Space Optical Communications technology successfully showed that data encoded in lasers could be reliably transmitted, received, and decoded after traveling millions of miles from Earth at distances comparable to Mars. Nearly two years after launching aboard the agency’s Psyche mission in 2023, the technology demonstration recently completed its 65th and final pass, sending a laser signal to Psyche and receiving the return signal, from 218 million miles away. 
      “NASA is setting America on the path to Mars, and advancing laser communications technologies brings us one step closer to streaming high-definition video and delivering valuable data from the Martian surface faster than ever before,” said acting NASA Administrator Sean Duffy. “Technology unlocks discovery, and we are committed to testing and proving the capabilities needed to enable the Golden Age of exploration.”
      This video details how the Deep Space Optical Communications experiment broke records and how the technology demonstration could pave the way for future high-bandwidth data transmission out to Mars distances and beyond. NASA/JPL-Caltech Record-breaking technology
      Just a month after launch, the Deep Space Optical Communications demonstration proved it could send a signal back to Earth it established a link with the optical terminal aboard the Psyche spacecraft.
      “NASA Technology tests hardware in the harsh environment of space to understand its limits and prove its capabilities,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Over two years, this technology surpassed our expectations, demonstrating data rates comparable to those of household broadband internet and sending engineering and test data to Earth from record-breaking distances.”
      On Dec. 11, 2023, the demonstration achieved a historic first by streaming an ultra-high-definition video to Earth from over 19 million miles away (about 80 times the distance between Earth and the Moon), at the system’s maximum bitrate of 267 megabits per second. The project also surpassed optical communications distance records on Dec. 3, 2024, when it downlinked Psyche data from 307 million miles away (farther than the average distance between Earth and Mars). In total, the experiment’s ground terminals received 13.6 terabits of data from Psyche.
      How it works
      Managed by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, the experiment consists of a flight laser transceiver mounted on the Psyche spacecraft, along with two ground stations to receive and send data from Earth. A powerful 3-kilowatt uplink laser at JPL’s Table Mountain Facility transmitted a laser beacon to Psyche, helping the transceiver determine where to aim the optical communications laser back to Earth.
      Both Psyche and Earth are moving through space at tremendous speeds, and they are so distant from each other that the laser signal — which travels at the speed of light — can take several minutes to reach its destination. By using the precise pointing required from the ground and flight laser transmitters to close the communication link, teams at NASA proved that optical communications can be done to support future missions throughout the solar system.
      Another element of the experiment included detecting and decoding a faint signal after the laser traveled millions of miles. The project enlisted a 200-inch telescope at Caltech’s Palomar Observatory in San Diego County as its primary downlink station, which provided enough light-collecting area to collect the faintest photons. Those photons were then directed to a high-efficiency detector array at the observatory, where the information encoded in the photons could be processed.   
      “We faced many challenges, from weather events that shuttered our ground stations to wildfires in Southern California that impacted our team members,” said Abi Biswas, Deep Space Optical Communications project technologist and supervisor at JPL. “But we persevered, and I am proud that our team embraced the weekly routine of optically transmitting and receiving data from Psyche. We constantly improved performance and added capabilities to get used to this novel kind of deep space communication, stretching the technology to its limits.”
      Brilliant new era
      In another test, data was downlinked to an experimental radio frequency-optical “hybrid” antenna at the Deep Space Network’s Goldstone complex near Barstow, California. The antenna was retrofitted with an array of seven mirrors, totaling 3 feet in diameter, enabling the antenna to receive radio frequency and optical signals from Psyche simultaneously.
      The project also used Caltech’s Palomar Observatory and a smaller 1-meter telescope at Table Mountain to receive the same signal from Psyche. Known as “arraying,” this is commonly done with radio antennas to better receive weak signals and build redundancy into the system.
      “As space exploration continues to evolve, so do our data transfer needs,” said Kevin Coggins, deputy associate administrator, NASA’s SCaN (Space Communications and Navigation) program at the agency’s headquarters. “Future space missions will require astronauts to send high-resolution images and instrument data from the Moon and Mars back to Earth. Bolstering our capabilities of traditional radio frequency communications with the power and benefits of optical communications will allow NASA to meet these new requirements.”
      This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN program within the Space Operations Mission Directorate. The Psyche mission is led by Arizona State University. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator. NASA JPL, managed by Caltech in Pasadena, California, is responsible for the mission’s overall management.
      To learn more about the laser communications demo, visit:
      https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc/
      NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase NASA’s Tech Demo Streams First Video From Deep Space via Laser Teachable Moment: The NASA Cat Video Explained News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2025-120
      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      2 min read NASA Gateways to Blue Skies 2026 Competition
      Article 28 minutes ago 6 min read NASA’s Tally of Planets Outside Our Solar System Reaches 6,000
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
  • Check out these Videos

×
×
  • Create New...