Jump to content

Carbon Nanotubes and the Search for Life on Other Planets


Recommended Posts

  • Publishers
Posted

A NASA-developed material made of carbon nanotubes will enable our search for exoplanets—some of which might be capable of supporting life. Originally developed in 2007 by a team of researchers led by Innovators of the Year John Hagopian and Stephanie Getty at NASA’s Goddard Space Flight Center, this carbon nanotube technology is being refined for potential use on NASA’s upcoming Habitable Worlds Observatory (HWO)—the first telescope designed specifically to search for signs of life on planets orbiting other stars.

As shown in the figure below, carbon nanotubes look like graphene (a single layer of carbon atoms arranged in a hexagonal lattice) that is rolled into a tube. The super-dark material consists of multiwalled carbon nanotubes (i.e., nested nanotubes) that grow vertically into a “forest.” The carbon nanotubes are 99% empty space so the light entering the material doesn’t get reflected. Instead, the light enters the nanotube forest and jiggles electrons in the hexagonal lattice of carbon atoms, converting the light to heat. The ability of the carbon nanotubes to eliminate almost all light is enabling for NASA’s scientific instruments because stray light limits how sensitive the observations can be. When applied to instrument structures, this material can eliminate much of the stray light and enable new and better observations.

Left; Images of graphene, which is a flat hexagonal array of carbon atoms, including single walled nanotubes which look like rolled up graphene and multiwalled carbon nanotubes which look like nested tubes Right; a carbon nanotube forest which has a section cut out of it revealing vertically aligned tubes
Left: Artist’s conception of graphene, single and multiwalled carbon nanotube structures. Right: Scanning electron microscope image of vertically aligned multiwalled carbon nanotube forest with a section removed in the center.
Credit: Delft University/Dr. Sten Vollebregt and NASA GSFC

Viewing exoplanets is incredibly difficult; the exoplanets revolve around stars that are 10 billion times brighter than they are. It’s like looking at the Sun and trying to see a dim star next to it in the daytime. Specialized instruments called coronagraphs must be used to block the light from the star to enable these exoplanets to be viewed. The carbon nanotube material is employed in the coronagraph to block as much stray light as possible from entering the instrument’s detector.

The image below depicts a notional telescope and coronagraph imaging an exoplanet. The telescope collects the light from the distant star and exoplanet. The light is then directed to a coronagraph that collimates the beam, making the light rays parallel, and then the beam is reflected off the apodizer mirror, which is used to precisely control the diffraction of light.  Carbon nanotubes on the apodizer mirror absorb the stray light that is diffracted off edges of the telescope structures, so it does not contaminate the observations.  The light is then focused on the focal plane mask, which blocks the light from the star but allows light from the exoplanet to pass.  The light gets collimated again and is then reflected off a deformable mirror to correct distortion in the image.  Finally, the light passes through the Lyot Stop, which is also coated with carbon nanotubes to remove the remaining stray light.  The beam is then focused onto the detector array, which forms the image. 

Even with all these measures some stray light still reaches the detector, but the coronagraph creates a dark zone where only the light coming from the exoplanet can be seen. The final image on the right in the figure below shows the remaining light from the star in yellow and the light from the exoplanet in red in the dark zone.

image-2-coronagraph-schematic.jpg?w=1514
Schematic of a notional telescope and coronagraph imaging an exoplanet
Credit: Advanced Nanophotonics/John Hagopian, LLC

HWO will use a similar scheme to search for habitable exoplanets. Scientists will analyze the spectrum of light captured by HWO to determine the gases in the atmosphere of the exoplanet. The presence of water vapor, oxygen, and perhaps other gases can indicate if an exoplanet could potentially support life.

But how do you make a carbon-nanotube-coated apodizer mirror that could be used on the HWO? Hagopian’s company Advanced Nanophotonics, LLC received Small Business Innovation Research (SBIR) funding to address this challenge.

Carbon nanotubes are grown by depositing catalyst seeds onto a substrate and then placing the substrate into a tube-shaped furnace and heating it to 1382 degrees F, which is red hot! Gases containing carbon are then flowed into the heated tube, and at these temperatures the gases are absorbed by the metal catalyst and transform into a solution, similar to how carbon dioxide in soda water fizzes. The carbon nanotubes literally grow out of the substrate into vertically aligned tubes to form a “forest” wherever the catalyst is located.

Since the growth of carbon nanotubes on the apodizer mirror must occur only in designated areas where stray light is predicted, the catalyst must be applied only to those areas. The four main challenges that had to be overcome to develop this process were: 1) how to pattern the catalyst precisely, 2) how to get a mirror to survive high temperatures without distorting, 3) how to get a coating to survive high temperatures and still be shiny, and 4) how to get the carbon nanotubes to grow on top of a shiny coating. The Advanced Nanophotonics team refined a multi-step process (see figure below) to address these challenges.

image-3-making-an-apodizer.jpg?w=1752
Making an Apodizer Mirror for use in a coronagraph
Credit: Advanced Nanophotonics/John Hagopian, LLC

First a silicon mirror substrate is fabricated to serve as the base for the mirror. This material has properties that allow it to survive very high temperatures and remain flat. These 2-inch mirrors are so flat that if one was scaled to the diameter of Earth, the highest mountain would only be 2.5 inches tall!

Next, the mirror is coated with multiple layers of dielectric and metal, which are deposited by knocking atoms off a target and onto the mirror in a process called sputtering. This coating must be reflective to direct the desired photons, but still be able to survive in the hot environment with corrosive gases that is required to grow carbon nanotubes.

Then a material called resist that is sensitive to light is applied to the mirror and a pattern is created in the resist with a laser. The image on the mirror is chemically developed to remove the resist only in the areas illuminated by the laser, creating a pattern where the mirror’s reflecting surface is exposed only where nanotube growth is desired.

The catalyst is then deposited over the entire mirror surface using sputtering to provide the seeds for carbon nanotube growth. A process called liftoff is used to remove the catalyst and the resist that are located where nanotubes growth is not needed. The mirror is then put in a tube furnace and heated to 1380 degrees Fahrenheit while argon, hydrogen, and ethylene gases are flowed through the tube, which allows the chemical vapor deposition of carbon nanotubes where the catalyst has been patterned. The apodizer mirror is cooled and removed from the tube furnace and characterized to make sure it is still flat, reflective where desired, and very black everywhere else.

The Habitable Worlds Observatory will need a coronagraph with an optimized apodizer mirror to effectively view exoplanets and gather their light for evaluation. To make sure NASA has the best chance to succeed in this search for life, the mirror design and nanotube technology are being refined in test beds across the country.

Under the SBIR program, Advanced Nanophotonics, LLC has delivered apodizers and other coronagraph components to researchers including Remi Soummer at the Space Telescope Science Institute, Eduardo Bendek and Rus Belikov at NASA Ames, Tyler Groff at NASA Goddard, and Arielle Bertrou-Cantou and Dmitri Mawet at the California Institute of Technology. These researchers are testing these components and the results of these studies will inform new designs to eventually enable the goal of a telescope with a contrast ratio of 10 billion to 1.

Cool images of a variety of carbon nanotube patterned apodizer mirrors
Reflective Apodizers delivered to Scientists across the country
Credit: Advanced Nanophotonics/John Hagopian, LLC

In addition, although the desired contrast ratio cannot be achieved using telescopes on Earth, testing apodizer mirror designs on ground-based telescopes not only facilitates technology development, but helps determine the objects HWO might observe. Using funding from the SBIR program, Advanced Nanophotonics also developed transmissive apodizers for the University of Notre Dame to employ on another instrument—the Gemini Planet Imager (GPI) Upgrade. In this case the carbon nanotubes were patterned and grown on glass that transmits the light from the telescope into the coronagraph. The Gemini telescope is an 8.1-meter telescope located in Chile, high atop a mountain in thin air to allow for better viewing. Dr. Jeffrey Chilcote is leading the effort to upgrade the GPI and install the carbon nanotube patterned apodizers and Lyot Stops in the coronagraph to allow viewing of exoplanets starting next year. Discoveries enabled by GPI may also drive future apodizer designs.

More recently, the company was awarded a Phase II SBIR contract to develop next-generation apodizers and other carbon nanotube-based components for the test beds of existing collaborators and new partners at the University of Arizona and the University of California Santa Clara.

image-5-tyler-groff-and-john-hagopian.jp
Tyler Groff (left) and John Hagopian (right) display a carbon nanotube patterned apodizer mirror used in the NASA Goddard Space Flight Center coronagraph test bed.
Credit: Advanced Nanophotonics/John Hagopian, LLC

As a result of this SBIR-funded technology effort, Advanced Nanophotonics has collaborated with NASA Scientists to develop a variety of other applications for this nanotube technology.

A special carbon nanotube coating developed by Advanced Nanophotonics was used on the recently launched NASA Ocean Color Instrument onboard the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission that is observing both the atmosphere and phytoplankton in the ocean, which are key to the health of our planet. A carbon nanotube coating that is only a quarter of the thickness of a human hair was applied around the entrance slit of the instrument. This coating absorbs 99.5% of light in the visible to infrared and prevents stray light from reflecting into the instrument to enable more accurate measurements. Hagopian’s team is also collaborating with the Laser Interferometer Space Antenna (LISA) team to apply the technology to mitigate stray light in the European Space Agency’s space-based gravity wave mission.

They are also working to develop carbon nanotubes for use as electron beam emitters for a project sponsored by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Program. Led by Lucy Lim at NASA Goddard, this project aims to develop an instrument to probe asteroid and comet constituents in space.

In addition, Advanced Nanophotonics worked with researcher Larry Hess at NASA Goddard’s Detector Systems Branch and Jing Li at the NASA Ames Research Center to develop a breathalyzer to screen for Covid-19 using carbon nanotube technology. The electron mobility in a carbon nanotube network enables high sensitivity to gases in exhaled breath that are associated with disease.

This carbon nanotube-based technology is paying dividends both in space, as we continue our search for life, and here on Earth.

For additional details, see the entry for this project on NASA TechPort.

PROJECT LEAD

John Hagopian (Advanced Nanophotonics, LLC)

SPONSORING ORGANIZATION

SMD-funded SBIR project

Share

Details

Last Updated
Sep 03, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) sits outside a testing chamber after completing its thermal vacuum testing in the fall of 2024. Credit: NASA/JSC David DeHoyos To advance plans of securing a public/private partnership and land and operate NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon in collaboration with industry the agency announced Monday it is seeking U.S. proposals. As part of the agency’s Artemis campaign, instruments on VIPER will demonstrate U.S. industry’s ability to search for ice on the lunar surface and collect science data.
      The Announcement for Partnership Proposal contains proposal instructions and evaluation criteria for a new Lunar Volatiles Science Partnership. Responses are due Thursday, Feb. 20. After evaluating submissions, any selections by the agency will require respondents to submit a second, more detailed, proposal. NASA is expected to make a decision on the VIPER mission this summer.
      “Moving forward with a VIPER partnership offers NASA a unique opportunity to engage with the private sector,” said Nicky Fox, associate administrator in the Science Mission Directorate at NASA Headquarters in Washington. “Such a partnership provides the opportunity for NASA to collect VIPER science that could tell us more about water on the Moon, while advancing commercial lunar landing capabilities and resource prospecting possibilities.”
      This new announcement comes after NASA issued a Request for Information on Aug. 9, 2024, to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover after the program was canceled in July 2024.
      Any partnership would work under a Cooperative Research and Development Agreement. This type of partnership allows both NASA and an industry partner to contribute services, technology, and hardware to the collaboration.
      As part of an agreement, NASA would contribute the existing VIPER rover as-is. Potential partners would need to arrange for the integration and successful landing of the rover on the Moon, conduct a science/exploration campaign, and disseminate VIPER-generated science data. The partner may not disassemble the rover and use its instruments or parts separately from the VIPER mission. NASA’s selection approach will favor proposals that enable data from the mission’s science instruments to be shared openly with anyone who wishes to use it.
      “Being selected for the VIPER partnership would benefit any company interested in advancing their lunar landing and surface operations capabilities,” said Joel Kearns, deputy associate administrator for exploration in the Science Mission Directorate. “This solicitation seeks proposals that clearly describe what is needed to successfully land and operate the rover, and invites industry to propose their own complementary science goals and approaches. NASA is looking forward to partnering with U.S. industry to meet the challenges of performing volatiles science in the lunar environment.”
      The Moon is a cornerstone for solar system science and exoplanet studies. In addition to helping inform where ice exists on the Moon for potential future astronauts, understanding our nearest neighbor helps us understand how it has evolved and what processes shaped its surface. 
      To learn more about NASA’s lunar science, visit:
      https://www.nasa.gov/moon
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1100
      karen.fox@nasa.gov
      Share
      Details
      Last Updated Feb 03, 2025 Related Terms
      Missions VIPER (Volatiles Investigating Polar Exploration Rover) View the full article
    • By NASA
      NASA Science Live: Asteroid Bennu Originated from World with Ingredients and Conditions for Life
    • By NASA
      In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
      The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
      “NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
      In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
      Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
      Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
      These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
      “The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
      While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
      Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
      Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
      Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
      “These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
      For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
      “OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
      NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
      For more information on the OSIRIS-REx mission, visit:
      https://www.nasa.gov/osiris-rex
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Rani Gran
      Goddard Space Flight Center, Greenbelt, Maryland
      301-286-2483
      rani.c.gran@nasa.gov
      Share
      Details
      Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate

      View the full article
    • By Space Force
      Secretary Pete Hegseth was sworn in as the 29th Secretary of Defense.

      View the full article
    • By Space Force
      A joint-task force of Guardsmen and Reservists conquer air, space, and sea to provide Human Space Flight Support training for astronaut retrieval through search and rescue.

      View the full article
  • Check out these Videos

×
×
  • Create New...