Jump to content

Station Science Top News: August 29, 2024


Recommended Posts

  • Publishers
Posted

Researchers used an interferometer that can precisely measure gravity, magnetic fields, and other forces to study the influence of International Space Station vibrations. Results revealed that matter-wave interference of rubidium gases is robust and repeatable over a period spanning months. Atom interferometry experiments could help create high-precision measurement capabilities for gravitational, Earth, and planetary sciences.

Using ultracold rubidium atoms, Cold Atom Lab researchers examined a three-pulse Mach–Zehnder interferometer, a device that determines phase shift variations between two parallel beams, to understand the influence of space station vibrations. Researchers note that atom sensitivities and visibility degrade due to the vibration environment of the International Space Station. The Cold Atom Lab’s interferometer uses light pulses to create a readout of accelerations, rotations, gravity, and subtle forces that could signify new physics acting on matter. Cold Atom Lab experiments serve as pathfinders for proposed space missions relying on the sustained measurement of wave-matter interference, including gravitational wave detection, dark matter detection, seismology mapping, and advanced satellite navigation. 

Read more here.

Researchers developed a novel method to categorize and assess the fitness of each gene in one species of bacteria, N. aromaticavorans. Results published in BMC Genomics state that core metabolic processes and growth-promoting genes have high fitness during spaceflight, likely as an adaptive response to stress in microgravity. Future comprehensive studies of the entire genome of other species could help guide the development of strategies to enhance or diminish microorganism resilience in space missions.

The Bacterial Genome Fitness investigation grows multiple types of bacteria in space to learn more about important processes for their growth. Previous studies of microorganism communities have shown that spaceflight can induce resistance to antibiotics, lead to changes in biofilm formation, and boost cell growth in various species. N. aromaticivorans can degrade certain compounds, potentially providing benefits in composting and biofuel production during deep space missions.

Read more here.

Researchers burned large, isolated droplets of the hydrocarbon n-dodecane, a component of kerosene and some jet fuels, in microgravity and found that hot flames were followed by a prolonged period of cool flames at lower pressures. Results showed that hot flames were more likely to unpredictably reignite at higher pressures. Studying the burn behavior of hydrocarbons assists researchers in the development of more efficient engines and fuels that reduce fire hazards to ensure crew safety in future long-distance missions.

The Cool Flames investigation studies the low-temperature combustion of various isolated fuel droplets. Cool flames happen in microgravity when certain fuel types burn very hot and then quickly drop to a much lower temperature with no visible flames. This investigation studies several fuels such as pure hydrocarbons, biofuels, and mixtures of pure hydrocarbons to enhance understanding of low-temperature chemistry. Improved knowledge of low-temperature burning could benefit next-generation fuels and engines.

Read more here.

An astronaut conducts a Cool Flame investigation aboard the International Space Station, using the cylindrical Combustion Integrated Rack.
NASA astronaut Shane Kimbrough completing the Multi-user Droplet Combustion Apparatus reconfiguration to the Cool Flames Investigation setup.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Expert Answers Your Questions About Asteroid 2024 YR4
    • By NASA
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
      Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
      “Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
      Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
      Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
      Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
      The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
      NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
      CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
      NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
      Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
      The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
      In Memoriam: Jeff Dozier [1944–2024]
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituary Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic – and former Earth Observing System Project Scientist – died on November 17, 2024. Jeff’s research focused on snow hydrology and biogeochemistry in mountain environments and addressed the role of stored and melting snow in the hydrologic cycle as well as the economic and social impact on water resources. In these efforts, he embraced remote sensing with satellites to measure snow properties and energy balance. He was a Project Scientist with the Earth Observing System (EOS) Data and Information System, contributing to the design and management of very large information systems that would impact spatial modeling and environmental informatics.
      Jeff served as the second EOS Project Scientist from 1990–1992. During that time, he worked with the NASA science community to – in his own words – “accomplish the goals of EOS, the most important of which is to develop the capability to predict or assess plausible environmental changes – both natural and human-induced – that will occur in the future. Meeting this challenge for the next decade to century requires the integration of knowledge from the traditional disciplines and information from many different sources into a coherent view of the Earth system. EOS is the largest project in the history of NASA and arguably the most important national and international scientific mission of the next two decades.”
      Jeff’s work alongside Michael Matson, was featured in a 2019 NASA Earth Science news article: “NASA Tracks Wildfires From Above to Aid Firefighters Below.” While working at NOAA’s National Environmental Satellite, Data, and Information Service building in Camp Springs, MD, the pair detected methane fires in the Persian Gulf using the Advanced Very High Resolution Radiometer (AVHRR) instrument on the NOAA-6 satellite – marking the first time that such a small fire had been seen from space. Jeff went on to develop a mathematical method to distinguish small fires from other sources of heat, which become the foundation for nearly all subsequent satellite fire-detection algorithms. 
      At the time of his death, Jeff was Principal Investigator of a NASA-funded project with the objective of testing whether data from the Earth Surface Mineral Dust Source Investigation (EMIT) mission could be used to help refine the estimate for the snowpack melting rate. In the 2024 Earth Science news article, “NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission,” Jeff indicated that EMIT’s ability to ‘see’ well into the infrared (IR) spectrum of light is key to his group’s efforts because ice is “pretty absorptive at near-IR and shortwave-IR wavelengths.” The results from this research will help inform water management decisions in states, such as California, where meltwater makes up the majority of the agricultural water supply.
      Jeff earned a Bachelor’s of Science degree from California State University, Hayward (now California State University, East Bay) and a Master’s of Science degree and Ph.D. from the University of Michigan. He spent his career teaching at the University of California, Santa Barbara (UCSB), where he was named the founding Dean of the Bren School of Environmental Science and Management at UCSB in 1994. As the Dean, he recruited renowned faculty and developed one of the top environmental programs in the country. After his role as Dean, Jeff returned as a professor at Bren, educating the next generation of Earth scientists.
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituaryView the full article
  • Check out these Videos

×
×
  • Create New...