Members Can Post Anonymously On This Site
Co-creating authentic STEM learning experiences with Latino communities
-
Similar Topics
-
By NASA
6 Min Read NASA Stennis Flashback: Learning About Rocket Engine Smoke for Safe Space Travel
An image shows engineers at an early version of the test stand at the Diagnostic Testbed Facility. From 1988 to the mid-1990s, NASA Stennis engineers operated the facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. Credits: NASA/Stennis NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site. More than 35 years ago, it also served as a hands-on classroom for NASA engineers seeking to improve the efficiency of space shuttle main engines.
From 1988 to the mid-1990’s, NASA Stennis engineers operated a Diagnostic Test Facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. The effort also laid the groundwork for the frontline research-and-development testing conducted at the center today.
“The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team and of its willingness to support the nation’s space exploration program in all ways needed and possible,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate.
The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team…
joe schuyler
NASA Stennis Engineering and Test Directorate Director
Tests conducted at the Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. NASA/Stennis An image shows the Diagnostic Testbed Facility test stand data acquisition trailer. NASA/Stennis The Need
Envision a rocket or space vehicle launching into the sky. A trail of bright exhaust, known as the engine plume, follows. As metals wear down in the engines from the intense heat of the combustion process, the flame glows with colors, some visible, such as orange or yellow, and others undetectable by the human eye.
The colors tell a story – about the health and operation of the engine and its components. For space shuttle main engines, which flew on multiple missions, engineers needed to understand that story, much as a doctor needs to understand the condition of a human body during checkup, to ensure future engine operation.
Where better place to study such details than the nation’s premier propulsion test site? Paging NASA Stennis.
An image shows the rocket motor and thruster at the Diagnostic Testbed Facility. NASA/Stennis An image shows the Diagnostic Testbed Facility blended team of NASA personnel and contractors. Kneeling, left to right, is Brantly Adams (NASA), Felix Bircher (Sverdrup Technology), Dennis Butts (Sverdrup Technology), and Nikki Raines (Sverdrup Technology). Standing, left to right, NASA astronaut John Young, Greg Sakala (Sverdrup Technology), Barney Nokes (Sverdrup Technology), John Laboda (Sverdrup Technology), Glenn Varner (NASA), Stan Gill (NASA), Bud Nail (NASA), Don Sundeen (Sverdrup Technology), NASA astronaut John Blaha.NASA/Stennis The Facility
NASA Stennis has long enabled and supported innovative and collaborative work to benefit both the agency and the commercial space industry. When NASA came calling in the late 1980s, site engineers went to work on a plan to study space shuttle main engine rocket exhaust.
The concept for an enabling structure about the size of a home garage was born in October 1987. Five months later, construction began on a Diagnostic Testbed Facility to provide quality research capabilities for studying rocket engine exhaust and learning more about the metals burned off during hot fire.
The completed facility featured a 1,300-square-foot control and data analysis center, as well as a rooftop observation deck. Small-scale infrastructure was located nearby for testing a 1,000-pound-thrust rocket engine that simulated the larger space shuttle main engine. The 1K engine measured about 2 feet in length and six inches in diameter. Using a small-scale engine allowed for greater flexibility and involved less cost than testing the much-larger space shuttle engine.
An image shows Sverdrup Technology’s Robert Norfleet as he preps the dopant injection system for testing at the Diagnostic Testbed Facility. The goal of the facility was to inject known metals and materials in a chemical form and then look at what emissions were given off. During one test, generally a six or 12 second test, operators would inject three known dopants, or substances, and then run distilled water between each test to clean out the system.NASA/Stennis An image shows engineers Stan Gill, Robert Norfleet, and Elizabeth Valenti in the Diagnostic Testbed Facility test control center. NASA/Stennis The Process
Engineers could quickly conduct multiple short-duration hot fires using the smaller engine. A six-second test provided ample time to collect data from engine exhaust that reached as high as 3,900 degrees Fahrenheit.
Chemical solutions simulating engine materials were injected into the engine combustion chamber for each hot fire. The exhaust plume then was analyzed using a remote camera, spectrometer, and microcomputers to determine what colors certain metals and elements emit when burning.
Each material produced a unique profile. By matching the profiles to the exhaust of space shuttle main engine tests conducted at NASA Stennis, determinations could be made about which engine components were undergoing wear and what maintenance was needed.
We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work…It was a very good learning experience.
Glenn Varner
NASA Stennis Engineer
The Benefits
The Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics.
Multiple tests were conducted. The average turnaround time between hot fires was 18 to 20 minutes with the best turnaround from one test to another taking just 12 minutes. By January 1991, the facility had recorded a total of 588 firings for a cumulative 3,452 seconds.
As testing progressed, the facility team evolved into a collection of experts in plume diagnostics. Longtime NASA Stennis engineer Glenn Varner serves as the mechanical operations engineer at the Thad Cochran Test Stand, where he contributed to the successful testing of the first SLS (Space Launch System) core stage onsite.
However, much of Varner’s hands-on experience came at the Diagnostic Test Facility. “We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work,” he said. “It was a very good learning experience.”
An image shows the Diagnostic Testbed Facility team working in the test control center. Seated, left to right, is Steve Nunez, Glenn Varner, Joey Kirkpatrick. Standing, back row left to right, is Scott Dracon and Fritz Policelli. Vince Pachel is pictured standing wearing the headset. NASA/Stennis The physical remnants of the Diagnostic Testbed Facility are barely recognizable now, but that spirit and approach embodied by that effort and its teams continues in force at the center.
joe schuyler
NASA Stennis Engineering and Test Directorate Director
The Impact
The Diagnostic Testbed Facility impacted more than just those engineers involved in the testing. Following the initial research effort, the facility underwent modifications in January 1993. Two months later, facility operators completed a successful series of tests on a small-scale liquid hydrogen turbopump for a California-based aerospace company.
The project marked an early collaboration between the center and a commercial company and helped pave the way for the continued success of the NASA Stennis E Test Complex. Building on Diagnostic Testbed Facility knowledge and equipment, the NASA Stennis complex now supports multiple commercial aerospace projects with its versatile infrastructure and team of propulsion test experts.
“The physical remnants of the Diagnostic Testbed Facility are barely recognizable now,” Schuyler said. “But that spirit and approach embodied by that effort and its teams continues in force at the center.”
Additional Information
NASA Stennis has leveraged hardware and expertise from the Diagnostic Testbed Facility to provide benefit to NASA and industry for two decades and counting.
The facility’s thruster, run tanks, valves, regulators and instrumentation were used in developing the versatile four-stand E Test Complex at NASA Stennis that includes 12 active test cell positions capable of various component, engine, and stage test activities.
“The Diagnostic Testbed Facility was the precursor to that,” said NASA engineer Glenn Varner. “Everything but the structure still in the grass moved to the E-1 Test Stand, Cell 3. Plume diagnostics was part of the first testing there.”
When plume diagnostic testing concluded at E-1, equipment moved to the E-3 Test Stand, where the same rocket engine used for the Diagnostic Testbed Facility has since performed many test projects.
The Diagnostic Testbed Facility thruster also has been used for various projects at E-3, most recently in a project for the exploration upper stage being built for use on future Artemis missions.
In addition to hardware, engineers who worked at the Diagnostic Testbed Facility also moved on to support E Test Complex projects. There, they helped new NASA engineers learn how to handle gaseous hydrogen and liquid hydrogen propellants. Engineers learned about purging, ignition, and handling propellants and all the components needed for a successful test.
“From an engineering perspective, the more knowledge you have of the processes and procedures to make propulsion work, the better off you are,” Varner said. “It applied then and still applies today. The Diagnostic Testbed Facility contributed to the future development of NASA Stennis infrastructure and expertise.”
Share
Details
Last Updated Feb 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
Article 7 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
It may have been small, but the white puff of smoke exiting the B-2 Test…
Article 2 years ago Keep Exploring Discover More Topics From NASA Stennis
NASA’s Stennis Space Center History
NASA Stennis Images
NASA Stennis Fact Sheets
NASA Stennis Front Door
View the full article
-
By NASA
Explore This Section Science Science Activation Tribal Library Co-Design STEM… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Tribal Library Co-Design STEM Space Workshop
Christine Shupla and Claire Ratcliffe Adams, from the NASA Science Activation program’s NASA@ My Library project, facilitated a professional development Co-Design Space Science, Technology, Engineering, & Mathematics (STEM) Workshop for Tribal libraries on August 29, 2024, hosted at the New Mexico State Library. The workshop was planned with input from Cassandra Osterloh (the New Mexico State Library’s Tribal Libraries Program Coordinator), Teresa Naranjo and Charles Suazo (of the Santa Clara Pueblo Library) and Rexine Calvert (of the P’oe Tsawa Community Library). Evaluation surveys indicate that the workshop met or exceeded 100% of participants’ expectations, and that activities could be made culturally relevant by the participants. Based on input from tribal advisors, the focus topic was space science (although there was also significant interest in various Earth science and environmental topics and in engineering design). These advisors also suggested that the workshop focus on co-design to enable the workshop participants to share and consider ways to make the content and activities culturally-relevant.
The team selected space STEM activities that could be done within library programs and that were within different categories:
Passive programming activities (which were available while participants were arriving) Physically active activities Engineering design activities Art/Science, Technology, Engineering, Art, & Mathematics (STEAM) activities After each type of activity, participants discussed aspects of the activities that they liked, modifications to make the activity more culturally-relevant for their Tribal community, and other activities within that category.
Throughout the workshop, Christine and Claire reiterated that the participants’ thoughts and input were critical—that they were the keepers of knowledge of their communities and that their voices were respected.
One participant stated, “I like how the instructors were re-assuring throughout the session. Making sure everyone was comfortable and making it feel safe to share ideas.” Another, said, “I tend to not participate, but observe, because I’m not a scientist. It was awesome (feeling comfortable) to design too!”
Sixteen of the participants filled out and returned evaluation surveys handed out at the close of the workshop. Just over 50% of those survey responses indicated that the workshop exceeded expectations; all others indicated that it met expectations. Participants also indicated that the activities themselves enabled participants to co-design and make them culturally relevant; this likely is in reference to the discussions held after each activity about ways to apply and revise them. The discussion after a crater-creation activity was particularly extensive: participants discussed replacing the materials with local materials and incorporating aspects of the local topography and even local art. Several participants expressed the desire for more workshops.
The NASA@ My Library project is supported by NASA under cooperative agreement award number NNX16AE30A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Workshop participants conducting the “Touchdown” activity, simulating insertion of a rover into an unknown environment. Christine Shupla Share
Details
Last Updated Feb 13, 2025 Editor Earth Science Division Editorial Team Related Terms
Science Activation Earth Science Heliophysics Planetary Science Explore More
2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
Article
3 days ago
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Article
1 week ago
3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
Article
1 week ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
During the 21st Century Community Learning Centers workshop, after-school educators learn to build the “Move It” student activity from NASA’s Build, Launch and Recover Student Activity Guide.Credit: Kristen Marlatt NASA and the U.S. Department of Education are teaming up to engage students in science, technology, engineering, and math (STEM) education during after-school hours. The interagency program strives to reach approximately 1,000 middle school students in more than 60 sites across 10 states to join the program, 21st Century Community Learning Centers (CCLC).
Members of NASA Glenn Research Center’s Office of STEM Engagement traveled to Lansing, Michigan, last month to participate in a two-day professional development training with local after-school educators and facilitators. The training focused on integrating real-world STEM challenges into the 21st CCLC programs.
After-school educators engage in a student activity from NASA’s Build, Launch, and Recover Student Activity Guide. In this challenge, students become engineers and NASA crawler operators while working in teams to design and build a rubber band-powered model of NASA’s crawler-transporter that can carry the most mass possible the farthest distance without failure. Credit: Kristen Marlatt “By engaging in NASA learning opportunities, students are challenged to use critical thinking and creativity to solve real-world challenges that scientists and engineers may face,” said Darlene Walker, NASA Glenn’s Office of STEM Engagement director. “Through the 21st CCLC program, NASA and the Department of Education aim to inspire the next generation of explorers and innovators through high-quality educational content that ignites curiosity and fosters a joy of learning for students across the country.”
NASA Glenn education specialists will continue to provide NASA-related content and academic projects for students, in-person staff training, program support, and opportunities for students to engage with NASA scientists and engineers.
For more information on NASA Glenn’s STEM Engagement, visit https://www.nasa.gov/glenn-stem/
Return to Newsletter Explore More
1 min read NASA Faces of Technology: Meet Lauren Best Ameen
Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
Article 8 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
Article 24 hours ago View the full article
-
By NASA
NASA’s Office of STEM Engagement at Johnson Space Center in Houston offers students a unique gateway to opportunity through the High School Aerospace Scholars (HAS) program. The initiative provides Texas juniors with hands-on experience in space exploration, working on projects ranging from rocket building to problem-solving in collaborative teams.
The stories of HAS alumni highlight the program’s impact, showcasing how it has opened doors to diverse careers in STEM and inspired graduates to empower others.
Johnson Community Engagement Lead Jessica Cordero, who served as the manager of the HAS program from 2018 to 2021, reflected on her time with the students:
“I had the privilege of working with so many incredible students who brought imagination and determination to their dreams,” she said. “During HAS, they connected with peers who shared their passion for NASA and STEM, and by the time they completed the program, they had a clear vision of the degrees they would pursue in college. These students are the Artemis Generation—we are in great hands!”
Meet Former HAS Student Neel Narayan
For Neel Narayan, NASA’s HAS program was a transformative experience that reshaped his understanding of space exploration and his place within it.
Through his time in the program, Narayan learned to navigate complex challenges with confidence. “My experience working with difficult information at HAS, combined with having mentors explain the unknown, taught me to be okay with confusion and comfortable with solving hard problems,” he said. “That’s what STEM is all about.”
Neel Narayan at NASA’s High School Aerospace Scholars (HAS) 20th anniversary ceremony. Before participating in the program, Narayan had a narrow view of what a STEM career entailed: long equations and solitary hours behind a computer. HAS completely dismantled that misconception. He said the program, “broke the most complex concepts into granular bites of digestible information, showing that complexity can be distilled if done correctly.”
“During the one-week onsite experience, I was talking to scientists, building rockets, and exploring NASA facilities—none of which involved equations!” he said. “HAS taught me that STEM is not confined to technical work.”
Narayan describes HAS as an eye-opening experience that redefined his approach to problem-solving. “Most of us are unaware of what we don’t know,” he said. “In collaborating with others, I was made aware of solutions that I didn’t know existed. The greatest asset you can have when solving a problem is another person.”
He credits the HAS community, especially his fellow scholars, with shaping his academic and professional growth. “I benefited most from the networking opportunities, particularly with the other HAS scholars in my cohort,” he said. “For those of us studying together in California, we’ve met up to discuss work, school, and external opportunities. Everyone in the program comes out very successful, and I’m grateful to have met those people and to still stay in touch with them.”
For high school students considering STEM but unsure of their direction, Narayan offers simple advice: keep exploring. “You don’t need to know your career path yet—in fact, you shouldn’t,” he said. “There is no better field to explore than STEM because of its vastness.”
Neel Narayan, University of Stanford. Narayan is currently pursuing a master’s degree in computational and mathematical engineering at Stanford University after earning an undergraduate degree in computer science. With his graduate program, Narayan is building on the foundation he developed through NASA’s HAS program.
Narayan aspires to contribute to the agency’s innovation and groundbreaking work. “NASA’s research changes the world, and being part of that mission is a dream I’ve had for a while,” he said.
Meet Sarah Braun
NASA’s HAS program solidified Sarah Braun’s understanding of how a STEM career could encompass her diverse interests, from design and education to plotting spacecraft orbits and planning launches. From her time in HAS to her current space exploration career, Braun believes STEM can be as multifaceted as the people who pursue it.
“HAS showed me the options ahead were as endless as my imagination,” she said. “The program convinced me that all my skills would be put to use in STEM, including getting to be creative and artistic.”
Sarah Braun engages in science, technology, engineering, and mathematics outreach at the Air Zoo Aerospace & Science Museum in Portage, Michigan, standing beside a Gemini model. The program gave her the opportunity to network, problem-solve, and collaborate with students from various backgrounds. “Learning how to communicate designs I could picture in my head was the biggest challenge, but by observing my teammates and mentors, I built the skills I needed.”
The networking opportunities she gained through HAS have also been instrumental to her academic and career growth. “The mentors I met through HAS have supported me throughout college and into my early career,” she said. “They taught me countless technical skills and how to best take advantage of my college years. I would never have made it to where I am today without HAS!”
After completing the HAS program, Braun interned with NASA, where she worked on space systems and paved the way for her career at Collins Aerospace.
Sarah Braun at the National Museum of the U.S. Air Force in Dayton, Ohio. She stands in front of the hardware she now works on at Collins Aerospace. Braun advises high school students uncertain about their career paths to get engaged and ask questions. “There are so many people out there who pursue STEM to follow a passion or challenge themselves,” she said. “Talking with people about what they have experienced and learned has been a huge help and inspiration for me throughout the years.”
She is also passionate about inspiring and educating others. “Whether I’m leading after-school STEM clubs or mentoring students, outreach and teaching have become my biggest contributions to NASA’s mission of exploration and discovery,” said Braun.
Meet Audrey Scott
Audrey Scott credits the HAS program with giving her a chance to explore science in the real world. “I experienced the excitement space could bring through livestream events like the landing of NASA’s InSight Lander mission and Cassini’s Grand Finale,” she said.
Audrey Scott, front, with fellow 2019 HAS graduates. Scott shared that the HAS program opened her eyes to the vast possibilities within STEM fields. Seeing the many ways to apply a STEM degree in practice broadened her perspective and inspired her to pursue her passion.
After HAS, Scott chose to study astrophysics at the University of Chicago in Illinois, where she is now pursuing her Ph.D. in experimental cosmology and laying the groundwork for a future in space exploration.
“My time with HAS and its encouragement of STEM excellence gave me the confidence I needed to take the plunge,” said Scott.
The program also transformed her approach to teamwork and exposed her to fast-paced problem-solving. “My school didn’t prioritize group projects, so working with people from all different backgrounds and personalities was informative for my future work in college,” she said. “HAS was a safe space to experiment with being both a leader and collaborator.”
She encourages high school students uncertain of their path to “try everything.” Scott advises, “If you have a moment of fascination, take advantage of that intellectual and creative energy, and learn something new. Time spent realizing you don’t like something is just as useful as time spent realizing you do.” She also recommends seeking out resources, finding mentors, and talking to everyone.
Scott continues to connect with some of her HAS cohort, especially young women navigating STEM paths alongside her. “We’ve been able to support each other through challenges,” she said. “Being part of HAS made me, in a way, part of the NASA family.”
Audrey Scott, front, with fellow 2019 HAS graduates. Scott’s HAS experience opened doors to opportunities like the Brooke Owens Fellowship, where she worked on a satellite in partnership with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and later the Illinois Space Grant award, which took her to NASA’s Jet Propulsion Laboratory in Southern California. She envisions part of her thesis research as a Ph.D. candidate taking place at a NASA center and remains open to a future at the agency.
“I’ll continue advocating for space exploration and pushing the boundaries of what’s known,” she said. “In my research, I’m driven by questions like, ‘What did the beginning of the universe look like—and why are we here?’”
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Rebecca Anderson, a junior enrolled at the Portage School of Leaders High School in South Bend, Indiana, spent time with NASA Glenn Research Center’s Daniel Sutliff, an acoustic engineer, on the campus of the University of Notre Dame on Nov. 7, 2024. Students witnessed the operation of the Advanced Noise Control Fan owned by NASA and on loan to the university for STEM experiences.Credit: Matt Cashore/University of Notre Dame High school students in Indiana are contributing to NASA’s groundbreaking research to develop quieter, more fuel-efficient aircraft engines.
Their learning experience is a collaboration between aircraft noise researchers from NASA’s Glenn Research Center in Cleveland and educators from the University of Notre Dame’s Turbomachinery Laboratory. The collaboration aims to encourage students’ interest in science, technology, engineering, and math (STEM) careers.
Recently, Notre Dame hosted students from The Portage School of Leaders High School and a team from NASA Glenn to see the Advanced Noise Control Fan operate in an outdoor setting. The fan is a NASA-owned test rig that has been configured to enable the study of a quieter aircraft engine technology. Known as the open rotor fan concept, the configuration involves an engine fan without a cover. Ground microphones were used during the test operated by Notre Dame to evaluate the radiated sound as the open rotor fan spun at various speeds.
NASA’s Advanced Noise Control Fan is on loan at the University of Notre Dame through a Space Act Agreement. It provides a hands-on learning laboratory for students in STEM.Credit: Matt Cashore/University of Notre Dame Students from the high school, which is part of the Career Academy Network of Public Schools, used 3D printers from the school’s facilities to fabricate parts for the open rotor test fan. The parts, known as stator blades, help direct and control airflow, ensuring smooth operation of the large, exposed fan blades that are the defining feature of an open fan engine design.
“It was beyond words,” said Rebecca Anderson, a junior from the high school. “The part I enjoyed most was when they got the fan running. It was really impressive to see how quiet it was. I feel like everyone involved in STEM would love to work for NASA, including me.”
NASA researcher Dr. Daniel Sutliff was part of the team from NASA Glenn to spend time mentoring the students.
“This is real-world, hands-on research for them,” Sutliff said. “If airlines are able to use technologies to make flight quieter and cleaner, passengers will have more enjoyable flights.”
The Advanced Noise Control Fan is on loan to Notre Dame from NASA through a Space Act Agreement. The fan research is supported by NASA’s Advanced Air Transport Technology project and its Efficient Quiet Integrated Propulsors technical challenge.
Explore More
2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
Article 28 mins ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 21 hours ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors
Article 21 hours ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.