Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
      An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Full image below. Credits:
      NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Follow-up research on a 2023 image of the Sagittarius C stellar nursery in the heart of our Milky Way galaxy, captured by NASA’s James Webb Space Telescope, has revealed ejections from still-forming protostars and insights into the impact of strong magnetic fields on interstellar gas and the life cycle of stars.  
      “A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said astrophysicist John Bally of the University of Colorado Boulder, one of the principal investigators. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”
      Detailed study of stars in this crowded, dusty region has been limited, but Webb’s advanced near-infrared instruments have allowed astronomers to see through the clouds to study young stars like never before.
      “The extreme environment of the galactic center is a fascinating place to put star formation theories to the test, and the infrared capabilities of NASA’s James Webb Space Telescope provide the opportunity to build on past important observations from ground-based telescopes like ALMA and MeerKAT,” said Samuel Crowe, another principal investigator on the research, a senior undergraduate at the University of Virginia and a 2025 Rhodes Scholar.
      Bally and Crowe each led a paper published in The Astrophysical Journal.
      Image A: Milky Way Center (MeerKAT and Webb)
      An image of the Milky Way captured by the MeerKAT (formerly the Karoo Array Telescope) radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Like a super-long exposure photograph, MeerKAT shows the bubble-like remnants of supernovas that exploded over millennia, capturing the dynamic nature of the Milky Way’s chaotic core. At the center of the MeerKAT image the region surrounding the Milky Way’s supermassive black hole blazes bright. Huge vertical filamentary structures echo those captured on a smaller scale by Webb in Sagittarius C’s blue-green hydrogen cloud. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Image B: Milky Way Center (MeerKAT and Webb), Labeled
      The star-forming region Sagittarius C, captured by the James Webb Space Telescope, is about 200 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*. The spectral index at the lower left shows how color was assigned to the radio data to create the image. On the negative end, there is non-thermal emission, stimulated by electrons spiraling around magnetic field lines. On the positive side, thermal emission is coming from hot, ionized plasma. For Webb, color is assigned by shifting the infrared spectrum to visible light colors. The shortest infrared wavelengths are bluer, and the longer wavelengths appear more red. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Using Infrared to Reveal Forming Stars
      In Sagittarius C’s brightest cluster, the researchers confirmed the tentative finding from the Atacama Large Millimeter Array (ALMA) that two massive stars are forming there. Along with infrared data from NASA’s retired Spitzer Space Telescope and SOFIA (Stratospheric Observatory for Infrared Astronomy) mission, as well as the Herschel Space Observatory, they used Webb to determine that each of the massive protostars is already more than 20 times the mass of the Sun. Webb also revealed the bright outflows powered by each protostar.
      Even more challenging is finding low-mass protostars, still shrouded in cocoons of cosmic dust. Researchers compared Webb’s data with ALMA’s past observations to identify five likely low-mass protostar candidates.
      The team also identified 88 features that appear to be shocked hydrogen gas, where material being blasted out in jets from young stars impacts the surrounding gas cloud. Analysis of these features led to the discovery of a new star-forming cloud, distinct from the main Sagittarius C cloud, hosting at least two protostars powering their own jets.
      “Outflows from forming stars in Sagittarius C have been hinted at in past observations, but this is the first time we’ve been able to confirm them in infrared light. It’s very exciting to see, because there is still a lot we don’t know about star formation, especially in the Central Molecular Zone, and it’s so important to how the universe works,” said Crowe.
      Magnetic Fields and Star Formation
      Webb’s 2023 image of Sagittarius C showed dozens of distinctive filaments in a region of hot hydrogen plasma surrounding the main star-forming cloud. New analysis by Bally and his team has led them to hypothesize that the filaments are shaped by magnetic fields, which have also been observed in the past by the ground-based observatories ALMA and MeerKAT (formerly the Karoo Array Telescope).
      “The motion of gas swirling in the extreme tidal forces of the Milky Way’s supermassive black hole, Sagittarius A*, can stretch and amplify the surrounding magnetic fields. Those fields, in turn, are shaping the plasma in Sagittarius C,” said Bally.
      The researchers think that the magnetic forces in the galactic center may be strong enough to keep the plasma from spreading, instead confining it into the concentrated filaments seen in the Webb image. These strong magnetic fields may also resist the gravity that would typically cause dense clouds of gas and dust to collapse and forge stars, explaining Sagittarius C’s lower-than-expected star formation rate. 
      “This is an exciting area for future research, as the influence of strong magnetic fields, in the center of our galaxy or other galaxies, on stellar ecology has not been fully considered,” said Crowe.  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper led by Bally from the The Astrophysical Journal.
      View/Download the science paper led by Crowe from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Leah Ramsay – lramsay@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: press releases about the center of the Milky Way
      NASA’s Universe of Learning: ViewSpace Interactive image tour of the center of the Milky Way
      Learn more about the Milky Way and Sagittarius Constellation
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Apr 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Protostars Science & Research Stars The Milky Way The Universe View the full article
    • By Amazing Space
      UK Partial Solar eclipse LIVE
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Visiting Mars on the Way to the Outer Solar System
      Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University
      A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.
      Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.
      The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.
      Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.
      While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.
      During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.
      Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4493-4494: Just Looking Around


      Article


      4 hours ago
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA Men stand in front of turning vanes inside the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics Aircraft Engine Research Laboratory in this February 1944 publicity photo. The photo was taken just weeks after the tunnel became operational.
      The AWT was the only wind tunnel capable of testing full-size aircraft engines in simulated altitude conditions. A large wooden drive fan, located on the other side of these vanes, created wind speeds up to 500 miles per hour. Each corner of the rectangular tunnel had turning vanes, which straightened the airflow and directed it around the corners. This set of vanes was in the 31-foot-diameter southeast corner of the tunnel. These elliptical panels consisted of 36 to 42 vertical vanes that were supported by three horizontal supports. The individual vanes were 2.5 feet long and half-moon shaped. Each set of vanes took weeks to assemble before they were installed during the summer of 1943.
      The Aircraft Engine Research Laboratory went through several name updates and changes through NACA and NASA history; it is now NASA’s Glenn Research Center in Cleveland.
      Image credit: NASA
      View the full article
    • By European Space Agency
      Video: 00:00:43 Aside from sunlight, the Sun sends out a gusty stream of particles called the solar wind. The ESA-led Solar Orbiter mission is the first to capture on camera this wind flying out from the Sun in a twisting, whirling motion. The solar wind particles spiral outwards as if caught in a cyclone that extends millions of kilometres from the Sun.
      Solar wind rains down on Earth's atmosphere constantly, but the intensity of this rain depends on solar activity. More than just a space phenomenon, solar wind can disrupt our telecommunication and navigation systems.
      Solar Orbiter is on a mission to uncover the origin of the solar wind. It uses six imaging instruments to watch the Sun from closer than any spacecraft before, complemented by in situ instruments to measure the solar wind that flows past the spacecraft.
      This video was recorded by the spacecraft's Metis instrument between 12:18 and 20:17 CEST on 12 October 2022. Metis is a coronagraph: it blocks the direct light coming from the Sun's surface to be able to see the much fainter light scattering from charged gas in its outer atmosphere, the corona.
      Metis is currently the only instrument able to see the solar wind's twisting dance. No other imaging instrument can see – with a high enough resolution in both space and time – the Sun's inner corona where this dance takes place. (Soon, however, the coronagraph of ESA's Proba-3 mission might be able to see it too!)
      The research paper that features this data, ‘Metis observations of Alfvénic outflows driven by interchange reconnection in a pseudostreamer’ by Paolo Romano et al. was published today in The Astrophysical Journal.
      Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA.
      [Technical details: The starting image of the video shows the full view of Solar Orbiter's Metis coronagraph in red, with an image from the spacecraft's Extreme Ultraviolet Imager in the centre (yellow). Zooming to the top left of this view, we see a video derived from Metis observations. The vertical edge of the video spans 1 274 000 km, or 1.83 solar radii. The contrast in the Metis video has been enhanced by using a ‘running difference’ technique: the brightness of each pixel is given by the average pixel brightness of three subsequent frames, minus the average pixel brightness of the three preceding frames. This processing makes background stars appear as horizontal half-dark, half-light lines. Diagonal bright streaks and flashes are caused by light scattering from dust particles close to the coronagraph.] 
      View the full article
  • Check out these Videos

×
×
  • Create New...