Jump to content

Aaron Vigil Helps Give SASS to Roman Space Telescope


NASA

Recommended Posts

  • Publishers

The stars in the big Wyoming skies inspired Aaron Vigil as a child to dream big. Today, he’s a mechanical engineer working on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope at Goddard.

Name: Aaron Vigil
Title: Mechanical Engineer
Formal Job Classification: Aerospace Technology, Flight Structures
Organization: Mechanical Engineering, Engineering and Technology Directorate (Code 543)

Aaron Vigil stands in front of building with American Flag and NASA meatball. He wears a blue button down shirt.
Aaron Vigil is a mechanical engineer at Goddard Space Flight Center in Greenbelt, Md.
Photo courtesy of Aaron Vigil

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

I currently work on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope. I support daily integration and testing tasks related to the SASS assembly. I spend a lot of my time working with Goddard mechanical technicians and other engineers to execute test plans and procedures to assemble, test, and integrate SASS hardware.   

What interests you about space?

I grew up in rural Wyoming. I did a lot of hiking, hunting, fishing, and camping. We were on the mountains constantly. I remember being up at night, sitting around the campfire with my family, looking up at the stars. 

I was fascinated and captivated! I wanted to learn more about space.

Aaron Vigil stands in front of spacecraft hardware in the Goddard cleanroom. He wears a full cleanroom suit.
“I currently work on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope,” said Aaron. “I support daily integration and testing tasks related to the SASS assembly.”
Photo credit: NASA/Chris Gunn

What brought you to Goddard?

In 2019, I began a B.S. in mechanical engineering at the University of Wyoming in Laramie. 

In the spring of 2020, I reached out to an organization at the University of Wyoming looking for opportunities to further my education in the field of aerospace. They introduced me to the Wyoming Space Grand Consortium and, through their website, I learned of and applied to be a NASA Office of STEM Engagement intern in the spring of 2021. I received an offer and, in the summer of 2021, began working as a remote intern at Goddard on the 3D modeling and rendering of early spacecraft.  

How did the Hispanic Advisory Committee for Employees (HACE) introduce you to the Pathways Program?

The summer of 2021, the different employee advisory committees at Goddard held presentations for the interns. I am Hispanic; I naturally gravitated towards HACE and fell in love with the extremely warm community they provided. 

I attended their monthly meetings and I presented to the center at their end of the summer intern presentation. HACE introduced me to the Pathways Program, and the organization was instrumental in my becoming a Pathways student intern. This Pathways internship eventually led to my conversion to a fulltime employee and my current position in the Mechanical Engineering Branch here at Goddard.

What one piece of advice would you give to a new intern?

Never be afraid to ask questions and always seek out new connections. Goddard is a well of knowledge, you can learn and grow a lot from those around you.

Tell us about your mentorship at Goddard.

Jack Marshall is an aerospace engineer and the lead for SASS. When I was an intern, he showed me a glimpse into the world of engineering, providing perspective on all aspects of the project from administrative to technical. He continues to guide my engineering journey and has been instrumental in developing me into the engineer I am today. I am incredibly grateful to Jack for his welcome and his guidance. 

What is the coolest part about your job?

The best parts about my job are the people I get to work with and the hardware we get to build. Whether we’re in a small lab in Goddard’s integration and testing facility or a large clean room, I get to spend most of my days working with incredible people to build, test, and integrate flight hardware. Every day there is something to be excited about and someone I get to work with who is likely to teach me something new. That excitement makes my work fun. 

It’s also fun to work in facilities like the largest clean room at Goddard, where the James Webb Space Telescope was built. It was interesting getting used to being gowned up. You start with removing electronics and putting on a face mask, hair net, and shoe covers, before taking a quick air shower.  Next comes the hood, coveralls, and boots, before taping your gloves and finally entering the clean room.

Aaron Vigil lays on a structure above a table to perform to work on a spacecraft part. He is fully dressed in cleanroom gear including a white clean room suit and blue gloves. A yellow harness straps him to the structure he lays on to work above the table.
“Whether we’re in a small lab in Goddard’s integration and testing facility or a large clean room, I get to spend most of my days working with incredible people to build, test, and integrate flight hardware,” said Aaron. “Every day there is something to be excited about and someone I get to work with who is likely to teach me something new.”
Photo credit: NASA/Jolearra Tshiteya

What do you hope to be doing in five years?

I would hope to have the opportunity to continue learning and working here at Goddard. I love what I do, and I hope to help others interested, find a similar path to NASA.

What do you do fun?

I still love to go fishing and hiking any chance I get and have been looking forward to doing more here in Maryland. Since moving to the area, I have also been enjoying attending Nationals baseball games in D.C., and I have been looking for opportunities to continuing to play music since graduating college. 

Aaron Vigil plays the sousaphone at University of Wyoming in Laramie. He wears marching band gear in white, gold, and maroon. Other band members are blurred, but visible in the background.
Aaron Vigil plays the sousaphone at the University of Wyoming in Laramie.
Photo courtesy of Aaron Vigil

Who inspires you?

My biggest inspirations have been my parents and grandparents, without them I would not be where I am today. I cannot thank them enough. They provided me my foundation and have supported me throughout my life, encouraging me to never give up. They have always had my back. 

I also want to thank my Wyoming community where I grew up and my early mentors within that community. 

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Grounded by roots, but always growing.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Aug 29, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By NASA
      For some people, working for NASA is a lifelong dream. For others, it is an interesting and perhaps unexpected opportunity that comes up at just the right time and place.

      Everything from family ties and influential teachers to witnessing human spaceflight history and enjoying sci-fi entertainment has helped bring people of all backgrounds together at NASA’s Johnson Space Center in Houston. Several of them recently shared their inspiration to join the NASA team.
      ***
      “As a kid, I always had my head up looking at the stars. I loved astronomy and seeing videos of humans walking on the Moon fascinated me! I wanted to be the first female to walk on the Moon. When Star Wars came out, I wanted to build my own R2-D2 that could explore the galaxies. I was curious how things worked (so I could build a robot) and a cousin told me about engineering. That was the name for what I wanted to do! So, I went to the High School for Engineering Professions in Houston. The guidance counselor there told me about an opportunity to apply for a summer internship with NASA as a junior. I got in and I’ve worked with NASA as much as I could since I was 16 years old – internships and full-time positions. I may not get the chance to be an astronaut and walk on the Moon, but I know I will play a role in helping achieve that dream for another female and a person of color!”
      – Alicia Baker, engineering project manager for Portable Life Support System test support, JSC Engineering, Technology, and Science (JETS) Contract

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos “My dad was an aerospace engineer with Lockheed Martin. I went to take your kid to work day and got to stand in front of a booster engine. I’ve wanted to work in the space industry ever since. I almost didn’t enter the field after getting my aerospace degree, but I was fortunate to take an Intro to Human Spaceflight class during my last quarter of college. Without that class and the professor (who had worked at Johnson) I wouldn’t be here today. I’m so glad my path led me here. Johnson is such a great place to be, and I can look back and tell little Margaret that we did it!”

      – Margaret Kennedy, aerospace systems engineer, Engineering Directorate Crew and Thermal Systems Division

      Margaret Kennedy and her dad visited Space Center Houston when she started her job at NASA’s Johnson Space Center in October 2019.Image courtesy of Margaret Kennedy “In first grade, my teacher organized a ‘Space Week’ in which we learned about outer space. Her sons – who were studying engineering in college – came and launched model rockets for us. I knew from that point on that I wanted to work at NASA when I grew up.”

      – Krista Farrell, International Space Station attitude determination and control officer and motion control systems instructor; Boeing Starliner guidance, navigation, and control instructor

      Krista Farrell (center) stands with members of the Expedition 71 crew. From left: NASA astronauts Jeannette Epps, Matt Dominick, and Mike Barratt; Roscosmos cosmonaut Alexander Grebenkin; and NASA astronaut Tracy C. Dyson. NASA/Josh Valcarcel “I didn’t think I would ever work for NASA. But multiple professors in college encouraged me to challenge myself and do some space research. I realized that it was something that I was very passionate about. Thanks to my research work for the Europa Clipper as an undergraduate student, I got my first internship at NASA and subsequently an offer to join the Pathways Program. Now I am part of a small group of engineers that solve entry, descent, and landing problems for multiple missions on Earth, the Moon, and Mars.”
      – Sergio Sandoval, guidance engineer, Engineering Directorate Flight Mechanics and Trajectory Design Branch

      Sergio Sandoval helps staff a NASA table during a Johnson Space Center community engagement event.Image courtesy of Sergio Sandoval
      “Dad would take me to the viewing room of the original Mission Operations Control Room (MOCR) during the Apollo era. He was one of the people supporting MOCR in the Staff Support Room. I have worked at Johnson for 27 years [as a contractor] for Lockheed Martin, Hamilton Sundstrand, and Jacobs Technology.”
      – David Fanelli, software engineer, Energy Systems Test Area

      “In early 1969, when I was a boy, my uncle visited the Johnson Space Center and brought back astronaut and mission photos of the recently completed Apollo 8 lunar orbiting mission. Those photos, coupled with a Saturn V rocket model I assembled, and the Time Life records and books about the Apollo space program my parents purchased for me, sparked my imagination. I knew I wanted to work for NASA one day. It wasn’t until many years later that that dream became a reality, when I joined NASA’s co-op program for college students during my second attempt to become an aeronautical engineer. After I graduated college, I began working full time as a civil servant engineer at Johnson.”
      – David Fletcher, NASA lead, Gateway-Ready Avionics Integration Lab

      David Fletcher (center) with his daughters Jessica (left) and Erica (right). Image courtesy of David Fletcher
      “I remember watching Star Trek and Star Wars as a kid with my dad. I found some of his college notes in a box one day and thought the small, neat print on graph paper pads was really pretty. He went to the University of Texas at Austin to study astrophysics and engineering, but he never got to finish. Fast forward to 2022 and I find myself in Houston for an unknown amount of time, so I decided to go out and make some friends. I met a woman at a Geeky Game Night, and I learned that she was a food scientist at NASA! After talking some more, she told me to send her my resume. Later that week I received a call to set up an interview. I’m still in awe of how that one chance connection led me to my childhood dream of working at NASA.”

      – Kristin Dillon, document/IT specialist, Space Food Systems Laboratory


      “I grew up in a small agricultural village in India. My first introduction to spaceflight was reading Russian cosmonauts’ translated accounts of the Apollo-Soyuz Test Project as a young girl. I am still not sure whether my father picked that book for me on a whim or with a grand dream for his daughter, but it certainly had me hooked. However, I found my true calling to make human spaceflight safer and more efficient after witnessing the Columbia mishap. India, at the time, did not have a human spaceflight program. Thus started a 20-year-long grand adventure of seeking opportunities, pursuing them, immigrating to the United States, and finding my path to NASA, which culminated in a Pathways internship at Johnson.”

      – Poonampreet Kaur Josan, three-time Pathways intern, currently supporting the Human Health and Performance Directorate Habitability and Human Factors Branch
      View the full article
    • By NASA
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, announced Wednesday it will continue its historic in-space autonomous systems payload mission aboard an orbiting satellite through a follow-on agreement with Sidus Space, Inc.
      “We are excited to report the historic ASTRA (Autonomous Satellite Technology for Resilient Applications) mission will continue,” said Chris Carmichael, chief, Stennis Autonomous Systems Laboratory (ASL) branch at NASA Stennis. “We look forward to working with Sidus Space to demonstrate the capabilities of the NASA Stennis payload and our autonomous systems team.”
      With this new agreement, the ASTRA payload will be used to collect onboard data on satellite systems and support management of the satellite’s Electrical Power System (EPS). The NASA Stennis ASTRA system will monitor and autonomously optimize the satellite’s battery system, ensuring the satellite continues to operate as needed for the course of its remaining mission lifetime. The ASTRA EPS management capability provides a new, innovative level of adaptability and efficiency for monitoring the satellite’s ongoing operations.
      Developed by NASA Stennis to fly and demonstrate an autonomous systems hardware/software payload, ASTRA is the on-orbit mission. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation.
      The LS-1 small satellite launched into space on the SpaceX Transporter 10 rideshare mission March 4 and deployed the same day. Following payload activation by Sidus Space, the NASA Stennis team worked with the company to establish a telemetry link to send and receive data in the ASTRA Payload Operation Command Center located at the NASA site. The ASL team continued to checkout and verify operation of ASTRA, confirming in early July that ASTRA primary mission objectives were successful.  
      The team is now focused on demonstrating autonomous system management as part of the LS-1 satellite’s planned four-year mission. “We are excited about the opportunity to continue this unprecedented mission,” Carmichael said. “Every step helps advance our autonomous systems work and lays a foundation for continued development and success.”
      The NASA Stennis ASL team works to create safe-by-design autonomous systems. NASA’s ASTRA demonstrates technology that is required by NASA and industry for upcoming space missions. The ASTRA computer on the satellite runs a digital twin of key satellite systems, which identifies anomalies, and autonomously generates plans to resolve those issues.
      The ongoing success of the ASTRA mission comes as NASA Stennis moves forward with strategic plans to design autonomous systems that will help accelerate development of intelligent aerospace systems and services for government and industry.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      View the full article
    • By NASA
      A galactic halo is a loose collection of stars that extends 15 to 20 times beyond the radius of the brightest part of the galaxy. One of the few galaxies with a well-studied stellar halo is our neighbor, Andromeda, depicted here in the graphic. The stellar halo is illustrated with exaggerated brightness and density to show how far it extends. When the Nancy Grace Roman Space Telescope launches, it will be able to use its wide field of view to comprehensively image many more stellar halos of more distant galaxies.
      NASA, Ralf Crawford (STScI) The universe is a dynamic, ever-changing place where galaxies are dancing, merging together, and shifting appearance. Unfortunately, because these changes take millions or billions of years, telescopes can only provide snapshots, squeezed into a human lifetime.
      However, galaxies leave behind clues to their history and how they came to be. NASA’s upcoming Nancy Grace Roman Space Telescope will have the capacity to look for these fossils of galaxy formation with high-resolution imaging of galaxies in the nearby universe.
      Astronomers, through a grant from NASA, are designing a set of possible observations called RINGS (the Roman Infrared Nearby Galaxies Survey) that would collect these remarkable images, and the team is producing publicly available tools that the astronomy community can use once Roman launches and starts taking data. The RINGS survey is a preliminary concept that may or may not be implemented during Roman’s science mission.
      Roman is uniquely prepared for RINGS due to its resolution akin to NASA’s Hubble Space Telescope and its wide field of view – – 200 times that of Hubble in the infrared – – making it a sky survey telescope that complements Hubble’s narrow-field capabilities.
      Galactic Archaeologists
      Scientists can only look at brief instances in the lives of evolving galaxies that eventually lead to the fully formed galaxies around us today. As a result, galaxy formation can be difficult to track.
      Luckily, galaxies leave behind hints of their evolution in their stellar structures, almost like how organisms on Earth can leave behind imprints in rock. These galactic “fossils” are groups of ancient stars that hold the history of the galaxy’s formation and evolution, including the chemistry of the galaxy when those stars formed.  
      These cosmic fossils are of particular interest to Robyn Sanderson, the deputy principal investigator of RINGS at the University of Pennsylvania in Philadelphia. She describes the process of analyzing stellar structures in galaxies as “like going through an excavation and trying to sort out bones and put them back together.”  
      Roman’s high resolution will allow scientists to pick out these galactic fossils, using structures ranging from long tidal tails on a galaxy’s outskirts to stellar streams within the galaxy. These large-scale structures, which Roman is uniquely capable of capturing, can give clues to a galaxy’s merger history. The goal, says Sanderson, is to “reassemble these fossils in order to look back in time and understand how these galaxies came to be.” 
      Shedding Light on Dark Matter
      RINGS will also enable further investigations of one of the most mysterious substances in the universe: dark matter, an invisible form of matter that makes up most of a galaxy’s mass. A particularly useful class of objects for testing dark matter theories are ultra-faint dwarf galaxies. According to Raja GuhaThakurta of the University of California, Santa Cruz, “Ultra faint dwarf galaxies are so dark matter-dominated that they have very little normal matter for star formation. With so few stars being created, ultra-faint galaxies can essentially be seen as pure blobs of dark matter to study.” 
      Roman, thanks to its large field of view and high resolution, will observe these ultra-faint galaxies to help test multiple theories of dark matter. With these new data, the astronomical community will come closer to finding the truth about this unobservable dark matter that vastly outweighs visible matter: dark matter makes up about 80% of the universe’s matter while normal matter comprises the remaining 20%. 
      Ultra-faint galaxies are far from the only test of dark matter. Often, just looking in an average-sized galaxy’s backyard is enough. Structures in the halo of stars surrounding a galaxy often give hints to the amount of dark matter present. However, due to the sheer size of galactic halos (they are often 15-20 times as big as the galaxy itself), current telescopes are deeply inefficient at observing them.
      At the moment, the only fully resolved galactic halos scientists have to go on are our own Milky Way and Andromeda, our neighbor galaxy. Ben Williams, the principal investigator of RINGS at the University of Washington in Seattle, describes how Roman’s power will amend this problem: “We only have reliable measurements of the Milky Way and Andromeda, because those are close enough that we can get measurements of a large number of stars distributed across their stellar halos. So, with Roman, all of a sudden we’ll have 100 or more of these fully resolved galaxies.”
      When Roman launches by May 2027, it is expected to fundamentally alter how scientists understand galaxies. In the process, it will shed some light on our own home galaxy. The Milky Way is easy to study up close, but we do not have a large enough selfie stick to take a photo of our entire galaxy and its surrounding halo. RINGS shows what Roman is capable of should such a survey be approved. By studying the nearby universe, RINGS can examine galaxies similar in size and age to the Milky Way, and shed light on how we came to be here. 
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Patt Molinari
      Space Telescope Science Institute, Baltimore, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam
      Space Telescope Science Institute, Baltimore, Md.
      Explore More
      5 min read NASA Telescope to Help Untangle Galaxy Growth, Dark Matter Makeup
      Article 2 years ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago Share
      Details
      Last Updated Aug 29, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Matter Galaxies Stars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...