Jump to content

NASA Project in Puerto Rico Trains Students in Marine Biology


NASA

Recommended Posts

  • Publishers
7 Min Read

NASA Project in Puerto Rico Trains Students in Marine Biology

oceanos2024loiacono-3020.jpg?w=1536
A forested green peninsula of Culebra Island juts into the blue waters of the Caribbean as a rain storm hits in the distance. The teal blue surrounding the island indicates shallow waters, home to the island's famous coral reefs.
Credits: NASA Ames/Milan Loiacono

Tainaliz Marie Rodríguez Lugo took a deep breath, adjusted her snorkel mask, and plunged into the ocean, fins first. Three weeks earlier, Rodríguez Lugo couldn’t swim. Now the college student was gathering data on water quality and coral reefs for a NASA-led marine biology project in Puerto Rico, where she lives.  

“There is so much life down there that I never knew about,” Rodríguez Lugo said. “And it’s beautiful.”  

“There is so much life down there that I never knew about, and it’s beautiful.”

Tainaliz Marie Rodríguez Lugo

Tainaliz Marie Rodríguez Lugo

OCEANOS 2024 Intern

Long golden tendrils of a soft coral drift toward the camera, surrounded by purple sea fans. These sea fans, many slightly larger than a dinner plate, are rounded and so flat they are almost two dimensional. The corals sit on a reef surrounded by vibrant blue water, and are tall enough to almost touch the ocean surface just above them.

The sea whip and purple sea fans in the photo above are found off the coast of Playa Melones, Culebra, a small island off the east cost of Puerto Rico and a popular destination for snorkelers.

Puerto Rico is home to more than 1,300 square miles of coral reefs, which play a vital role in protecting the island from storms, waves, and hurricanes. Reef-related tourism provides nearly $2 billion in annual income for the island.

A chunk of brown, orange, yellow and white lumpy coral stands out agains the blue of the sea floor around it. A few of the coral lobes on the right are bright white, and a few vibrant red sea sponges dot the coral.

But coral reefs in Puerto Rico and around the world are experiencing more frequent and severe bleaching events. High ocean temperatures in regions around the globe have led to coral bleaching, which is when corals expel zooxanthellae – the colorful, symbiotic microscopic algae that live inside coral tissues and provide 80-90% of its nutrients. When stressors persist, the corals eventually starve and turn bone-white.

In April 2024, NOAA (National Oceanic and Atmospheric Administration) announced that the world was experiencing a global bleaching event, the fourth on record. You can see bleached spots in the lobed star coral pictured above, which is also colonized by Ramicrusta, an invasive, burnt orange algae that poses an additional threat to reefs. 

Students Are Given Ocean Research Tools

A man wearing a teal long-sleeve and black short holds a white 3D-printed staghorn coral clump, which looks like a dinner plate with three nine-inch tree trunks sprouting from it. Around him, about a dozen high school interns in orange long-sleeve shirts and snorkel gear tread water in the teal blue of the bay.

Beginning in June, the month-long program that Rodriguez and 29 other local students participated in is called the Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students (OCEANOS).  The goal of OCEANOS is twofold: to teach Puerto Rican students about marine ecology and conservation, and to train students through hands-on fieldwork how to use marine science tools to monitor the health of coral reefs.

The course included classroom instruction, scientific fieldwork, collecting and analyzing ocean data from La Parguera and Culebra Island, and a final presentation. 

In the photo, OCEANOS instructor Samuel Suleiman shows a 3D-printed clump of staghorn coral to a group of students off the coast of Culebra. In areas where coral habitats have been damaged, conservationists use 3D-printed corals to attract and protect fish, algae, and other wildlife. 

A female high schooler in an orange long-sleeve shirt, black leggings, and snorkel equipment swims parallel to the sea floor, holding a compact camera. The ocean floor is a pale teal covered in bumpy coral, with a thin yellow line of a tape measure running through it.

To practice coral surveying techniques and evaluate biodiversity,students used compact cameras to snap a photo every half second, recording seven-meter by seven-meter quadrants of the ocean floor. Back on land, the students stitched these images – roughly 600 images per quadrant – into high-resolution mosaics, which they then used to catalog the types and distributions of various coral species.  

Low Light, Poor Water Quality, and Invasive Species Threaten Coral Reefs

oceanos2024loiacono-3498.jpg?w=2048

Students also built their own low-cost instruments, with sensors on each end to measure temperature and light, to help assess water quality and characteristics.  

The ideal temperature range for coral falls between 77- 82 degrees Fahrenheit (25-28 degrees Celsius). Water above or below this range is considered a potential stressor for coral and can impair growth. It can also increase the risk of disease, bleaching, and reproductive issues.    

Coral relies on light for growth. Less light means less photosynthesis for the zooxanthellae that live inside the coral, which in turn means less food for the coral itself. Cloudy water due to excessive sediment or phytoplankton can dim or block sunlight.

A man in a snorkel mask and a pale yellow long-sleeve shirt floats in bright blue water, left hand extended to hold two brown fuzzy balls of cyanobacteria. In the background, the sea floor looks like mini sand dunes marching off into the gloom, littered and in some places completely covered in the dark brown piles of cyanobacteria.

Additional threats to coral include fishing equipment, boat groundings, chemical runoff, and invasive species.  

In the photo above, OCEANOS instructor Juan Torres-Pérez holds two clumps of cyanobacteria, a type of bacteria that has choked a section of reef near Playa Melones. The exact cause of this excessive cyanobacteria growth is unclear, but it is likely due to land-based pollution leaching into nearby waters, he said. In the background, dark brown piles of cyanobacteria littering the ocean floor are visible. 

Students Help Grow and Plant New Coral

A male high school intern in a neon orange long sleeve shirt leans over in chest-high water, tying a four-inch piece of gold coral into a stringy net. Around him are the fuzzy outlines of six other students and instructors engaged in the same task, somewhat obscured from the haziness of the blue water.

Suleiman walked students through the process of planting new coral, which involved tying loose staghorn and elkhorn corals into a square frame. Each frame holds about 100 individual pieces of coral.  Suleiman leads a group called Sociedad Ambiente Marino (SAM), which has been working for more than 20 years to cultivate and plant more than 160,000 corals around Puerto Rico.

Three scuba divers in full wetsuits kneel on the sandy ocean floor releasing a stream of steady white bubbles that rise all the way up. The divers are pulling on thin ropes attached to a white PVC square frame, which is cross-hatched with string and tied-in yellow coral pieces. At the surface, a male instructor in a teal long-sleeve and snorkel gear and seven high school interns in bright orange long-sleeves and fins watch on.

Divers anchored these frames to the ocean floor. Under ideal conditions, branching species like elkhorn and staghorn coral grow one centimeter per month, or about 12-13 centimeters per year, making them ideal candidates for coral reef restoration. By comparison, mountainous and boulder coral, also prevalent in the Caribbean Sea, grow an average of just one centimeter per year. 

A square white PVC frame floats in teal water, held up by a white balloon. Inside the frame is are criss-crossing string holding roughly 100 yellow pieces of coral. In the background are clumps of dark green sea grass, agains the pale blue of the sandy sea floor.

The frames will remain on the ocean floor for 10 to 14 months, until the corals have quadrupled in size. At any given time, SAM has about 45 of these frames in coral ‘farms’ around Culebra, totaling almost 4,500 corals. 

Shot from the sea floor looking up, a man in snorkeling equipment and a teal shirt is silhouetted against the blue water and the bright light of the sun, visible at the ocean's surface. In the bottom-center of the frame is a lumpy mass of brown-orange coral.

Once the corals are ready to be planted, they will be added to various reefs to replace damaged or bleached corals, and shore up vulnerable habitats.

In the photo above, Suleiman gathers loose corals to place around an endangered coral species Dendrogyra cylindrus, more commonly referred to as Pillar Coral (front left). This underwater “garden,” as he called it, should attract fish and wildlife such as sea urchins, which will give the endangered coral — and the other species in this small reef — a better chance of survival.

A New Generation of Marine Scientists

Fifteen high schoolers in bright orange long-sleeve shirts stand on dark grey rock littered with tan sand. Behind them is a small cliff of the same rock, topped in bright green foliage. On either side and sitting in front of the students are five instructors, wearing teal long-sleeve shirts.

From the 2023 OCEANOS class, roughly half of the undergraduate students went on to pursue marine science degrees, and many hope to continue with a post-graduate program. For a scientific field historically lacking diverse voices, this is a promising step.

Among the high school students in the 2023 class, three went on to change their degree plans to oceanography after participating in the OCEANOS program, while others are finding ways to incorporate marine science into their studies.

Francisco Méndez Negrón, a 2023 OCEANOS graduate, is now a computer science student at the University of Puerto Rico at Rio Piedras and wants to apply robotics to marine ecology. “My goal is to integrate computer science and oceanography to make something that can contribute to the problems marine ecosystems are facing, mostly originated by us humans,” Méndez Negrón said. He returned to the OCEANOS program to serve as a mentor for the 2024 class. 

As for Tainaliz Marie Rodriguez Lugo, she managed to overcome her swim anxiety while discovering a love of the ocean. She credited the instructors who were patient, encouraging, and never left her side in the water. 

“I was really scared going into this internship,” Rodríguez Lugo said. “I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.”

I was really scared going into this internship. I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.

Tainaliz Marie Rodríguez Lugo

Tainaliz Marie Rodríguez Lugo

OCEANOS 2024 Intern

When asked how she would describe coral to someone who has never seen one, Rodríguez Lugo just laughed. “I can’t. There are no words for it. I would just take them to the reefs.” 

For more information about OCEANOS, visit:

https://www.nasa.gov/oceanos

The OCEANOS program’s final session will take place next year. Applications for the 2025 OCEANOS program will open in March. To apply, visit:

https://nasa.gov/oceanos-application

Photographs and story by Milan Loiacono, NASA’s Ames Research Center

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
      This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
      Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
      This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Amber Jacobson / Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
      Share
      Details
      Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
  • Check out these Videos

×
×
  • Create New...