Jump to content

Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


NASA

Recommended Posts

  • Publishers

3 min read

Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night

During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used to capture sound data as part of the Eclipse Soundscapes Project — a multisensory participatory science (also known as “citizen science”) project that is studying how eclipses impact life on Earth. Following the eclipse, participants had the option to keep or send back their AudioMoth device for donation. Fifty-two AudioMoths were sent back to Eclipse Soundscapes (ES) so that ES could donate them to projects or communities for future scientific usage. Eighteen of those AudioMoths have been donated to Dark Sky Missouri, an initiative to protect our night skies and the creatures that depend on them. On Wednesday, August 21, 2024, at 3 p.m. EST, Eclipse Soundscapes hosted a webinar with Dark Sky Missouri founder Don Ficken to learn more about how these AudioMoths will contribute to future participatory science.

Don Ficken is a Missouri Master Naturalist and amateur astronomer who found the Eclipse Soundscapes Project through SciStarter, an organization that helps bring together millions of curious and concerned people in the world to engage in real-world research questions through citizen science. He participated as a Data Collector in 2024. “[The Eclipse Soundscapes Project] opened up a door for me because I never really thought about sound acoustics in this way,” Ficken said.

It occurred to Ficken that acoustics could help bolster Dark Sky Missouri’s efforts to study and conserve night time wildlife. One of these efforts, Lights Out Heartland, encourages homeowners and businesses to minimize artificial light usage in order to protect migrating birds from collisions due to disorienting bright lights. Ficken hopes to use the AudioMoths to capture the birds’ nocturnal flight calls as they fly over locations like the Gateway Arch, Shaw Nature Reserve, and Missouri Botanical Gardens.

Dark Sky Missouri also hopes to take more general surveys of nature at night by placing AudioMoths in parks and natural areas. Even though parks are not typically open or staffed at night, the AudioMoths could help map the locations and movements of wildlife, creating talking points and learning opportunities for staff and visitors alike.

Both initiatives will be piloted during the fall bird migration, with the goal of developing a framework for an expanded long term project. While there are no opportunities for the general public to get involved in the projects just yet, Ficken says participatory scientists can benefit from the multisensory methods employed in the Eclipse Soundscapes Project. “I think that the thing that they should think about is really the door that acoustics would be opening for them,” he said. “In other words, you don’t have to just visually look at daytime. Think about sound. Think about night.” For more information on how Dark Sky Missouri will use the AudioMoth recorders, read the Eclipse Soundscapes blog post.

The Eclipse Soundscapes Project is supported by NASA under cooperative agreement award number 80NSSC21M0008 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

A barn owl flying at night.
Dark Sky Missouri will use the donated Eclipse Soundscapes AudioMoths to study bird calls and behavior at night.

Share

Details

Last Updated
Aug 28, 2024
Editor
NASA Science Editorial Team

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ 23 Min Read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The Next Full Moon is a Partial Lunar Eclipse; a SuperMoon; the Corn Moon; the Harvest Moon; the Fruit or Barley Moon; the end of Ganesh Chaturthi and the start of Pitru Paksha; Madhu Purnima; the Mid-Autumn, Mooncake, or Reunion Festival Moon; Chuseok; and Imomeigetsu or the Potato Harvest Moon.
      The full Moon will be Tuesday night, September 17, 2024, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars will show this full Moon on Wednesday based on Greenwich or Universal Time. The Moon will appear full for about three days, from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the Earth’s partial shadow at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with only the top 8 percent of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      The phases of the Moon for September 2024. NASA/JPL-Caltech This will be a supermoon. The term “supermoon” was coined by astrologer Richard Nolle in 1979 as either a new or full Moon that occurs when the Moon is within 90% of its closest to Earth. Since we can’t see new Moons, what has the public’s attention are full supermoons, the biggest and brightest Moons of the year. Although different publications use different thresholds for deciding which full Moons qualify, most agree this will be the second of four consecutive supermoons (effectively tied with the full Moon in October for the closest of the year).
      The Maine Farmer’s Almanac first published “Indian” names for the full Moons in the 1930s and these names have become widely known and used. According to this almanac, as the full Moon in September the Algonquin tribes in what is now the northeastern USA called this the Corn Moon, as this was the time for gathering their main staple crops of corn, pumpkins, squash, beans, and wild rice.
      As the full Moon closest to the autumnal equinox, this is the Harvest Moon. The first known written use of this name in the English language (per the Oxford English Dictionary) was in 1706. During the fall harvest season farmers sometimes need to work late into the night by moonlight. On average moonrise is about 50 minutes later each night. Around the Harvest Moon this time is shorter, about 25 minutes for the latitude of Washington, DC, and only 10 to 20 minutes farther north in Canada and Europe.
      Other European names for this full Moon are the Fruit Moon, as a number of fruits ripen as the end of summer approaches, and the Barley Moon, from the harvesting and threshing of barley.
      For Hindus, this full Moon marks the end of Ganesh Chaturthi and the start of Pitru Paksha. Ganesh Chaturthi (also called Vinayaka Chaturthi or Vinayaka Chavithi) is a 10 or 11 day festival honoring the god Ganesha that ends with this full Moon. Ganesha is easily recognized by his elephant head and is worshiped as the god of beginnings, wisdom, arts and sciences, and as the remover of obstacles. Throughout the festival celebrants offer food, sweets, and prayers to clay statues of Ganesha at home and on public stages. Traditions include chanting of Vedic hymns and Hindu texts, prayers, and fasting. On the last day (near the full Moon), people carry the statues to a nearby river or ocean and immerse them. As the clay dissolves, Ganesha is believed to return to his parents, the god Shiva and goddess Parvati, on Mount Kailash.
      Pitru Paksha (fortnight of the ancestors) is a 15 days long festival that ends with the new Moon. During this time, Hindus honor their ancestors (pitrs) with rituals, food offerings, and scripture reading. Pitru Paksha is also known by a number of other names.
      For some Buddhists in Bangladesh and Thailand this full Moon is Madhu Purnima, the Honey Full Moon Festival or the Honey-offering Festival. The legend is that when the Buddha was trying to bring peace between two factions in a forest, an elephant and a monkey fed him, with the elephant offering fruit and the monkey offering a honeycomb.
      In China, Vietnam, and some other Asian countries, this full Moon corresponds with the Mid-Autumn Festival, a traditional harvest festival. In China, other names for this festival include the Moon Festival, the Mooncake Festival, and the Reunion Festival (with wives visiting their parents then returning to celebrate with their husbands and his parents). Part of the festival includes offerings to the Moon Goddess Chang’e (the name the China National Space Agency gives their lunar missions).
      In Korea, this full Moon corresponds with the harvest festival Chuseok, during which Koreans return to their traditional hometowns to pay respect to the spirits of their ancestors.
      This full Moon corresponds with the first of two Japanese Tsukimi or “Moon-Viewing” festivals, also called Imomeigetsu (which translates as “potato harvest Moon”) because of the tradition of offering sweet potatoes to the Moon. These festivities have become so popular that they are often extended for several days after the full Moon.
      In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the eighth month of the Chinese year of the Dragon and Rabi’ al-Awwal in the Islamic calendar, the month in which many Muslims celebrate Mawlid, the birth of the Prophet Muhammad. This full Moon is near the middle of Elul in the Hebrew calendar. Elul is a time of preparation for the High Holy Days of Rosh Hashanah and Yom Kippur. Customs include granting and asking others for forgiveness as well as beginning or ending all letters with the wish that the recipient will have a good year.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Go out and observe the Moon, enjoy this harvest season (including corn, fruit, and sweet potatoes, and honey), remember your ancestors, stay in touch with your parents, and forgive and ask forgiveness. Here’s wishing you a good year!
      Comet C/2023 A3 (Tsuchinshan-ATLAS)
      Pay attention to the news about Comet C/2023 A3 (Tsuchinshan-ATLAS)! There are a number of “ifs” so we don’t like to raise expectations. Similar visitors from the Oort Cloud have broken apart and fizzled out as they passed close to the Sun. If this comet survives its passage by the Sun (closest approach on September 27, 2024) and if the amount of gas and dust it gives off does not decrease significantly, this might be one of the best comets in a long time. If it strongly scatters sunlight towards the Earth it might even be visible in the glow of dusk just after its closest approach to Earth on October 12.
      From the Washington, DC area and similar latitudes, this comet will be above the horizon before morning twilight begins from September 22 through October 4, with the current brightness curve predicting a steady increase in brightness from about visual magnitude 4 to near 3 (the smaller the number, the brighter the object). As it brightens it may be visible under dark sky conditions and even more impressive through binoculars or a telescope, although towards the start and end of this period it may be too low on the horizon to see when the sky is completely dark.  
      Between about October 4 and October 11 the Sun’s glare will mask visibility from the Northern Hemisphere. Check your local news or web sites for viewing information for your latitude. For example, Sky and Telescope reports that Southern Hemisphere skywatchers should fare better.
      Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM EDT. Around closest approach the comet’s brightness is predicted to peak at about visual magnitude 3 (similar to many stars). Forward scattering might increase the brightness significantly, possibly as high as -1 (brighter than every star except Sirius). How bright the comet actually appears will depend upon how much gas and dust it is giving off, which can change quickly. Also, brightness comparisons between comets and stars can be misleading as the light of the comet is spread out making it less distinct than a star with the same brightness.
      The best time to look should be the evenings on and shortly after October 12 with the comet above the western horizon after sunset. The evening of October 12 the comet will be 4 degrees above the western horizon as evening twilight ends, similar in altitude and to the right of Venus. The comet is expected to dim as it moves away from the Earth, but will appear higher in a darker sky and set later each evening, which could make it easier to see. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. The brightness will decrease to about magnitude 6 by the end of October.
      Meteor Showers
      During this lunar cycle four minor meteors showers are predicted to peak at 5 or fewer visible meteors per hour (under ideal viewing conditions), making them basically not visible from our light-polluted urban areas.
      Evening Sky Highlights
      On the evening of Tuesday, September 17 (the evening of the full Moon), as twilight ends (at 8:10 PM EDT), the rising Moon will be 11 degrees above the east-southeastern horizon with Saturn to the upper right at 14 degrees above the horizon. Later in the evening the partial shadow of the Earth will cover a small upper part of the Moon. Bright Venus will be 2 degrees above the west-southwestern horizon with the star Spica on the horizon to the lower left. The bright star closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 87 degrees above the western horizon. Vega is part of the Summer Triangle along with Deneb and Altair. It is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left along the west-southwestern horizon, appearing slightly higher each evening. The waxing Moon will pass by Venus on October 5, Antares on October 7, and Saturn on October 14. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth on October 12 at 11:10 AM. Assuming it survives its pass by the Sun on September 27 and depending upon how much gas and dust it gives off, it could be a good show in the evenings on and after October 12. See the comet summary above and keep an eye on the news for updates on this comet.
      By the evening of Thursday, October 17 (the evening of the full Moon after next), as twilight ends (at 7:24 PM EDT), the rising Moon will be 9 degrees above the eastern horizon. Saturn will be 27 degrees above the southeastern horizon. Bright Venus will be 6 degrees above the west-southwestern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 22 degrees above the western horizon. The bright star closest to overhead will be Deneb at 80 degrees above the northeastern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.
      Morning Sky Highlights
      On the morning of Wednesday, September 18 (the morning of the night of the full Moon), as twilight begins (at 5:55 AM EDT), the setting full Moon will be 15 degrees above the west-southwestern horizon. The brightest planet in the sky will be Jupiter at 71 degrees above the south-south eastern horizon. Near Jupiter will be Mars at 61 degrees above the east-southeastern horizon. Saturn will be below the Moon at 1 degree above the western horizon. The bright star appearing closest to overhead will be Capella, the brightest star in the constellation Auriga the charioteer, at 80 degrees above the northeastern horizon. Although we see Capella as a single star (the 6th brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 lightyears from us.
      As this lunar cycle progresses, Jupiter, Mars, Saturn, and the background of stars will appear to shift westward each evening. After September 19 Saturn set before morning twilight begins. The waning Moon will pass by the Pleiades star cluster on September 22, Mars on September 25, Pollux on September 26, and Regulus on September 29. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins from September 22 through October 4. Comets are notoriously difficult to predict, but if the amount of gas and dust it gives off remains constant it should increase in brightness each morning. See the comet summary above and keep an eye on the news for updates on this comet.
      By the morning of Thursday, October 17 (the morning of the full Moon after next), as twilight begins (at 6:22 AM EDT), the setting full Moon will be 11 degrees above the western horizon. The brightest planet in the sky will be Jupiter at 63 degrees above the west-southwestern horizon. Mars will be at 72 degrees above the south-southeastern horizon. The bright star appearing closest to overhead will be Pollux, the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini, at 75 degrees above the southeastern horizon. Pollux is an orange tinted star about 34 lightyears from Earth. It is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.
      Detailed Daily Guide
      Here for your reference is a day-by-day listing of celestial events between now and the full Moon on October 17, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Saturday night, September 14, is International Observe the Moon Night! See https://moon.nasa.gov/observe-the-moon-night/about/overview/ for more information.
      Our 24 hour clock is based on the average length of the solar day. Solar noon on Sunday, September 15 to solar noon on Monday, September 16, will be the shortest solar day of the year, 23 hours, 59 minutes, and 38.6 seconds long.
      Monday night into Tuesday morning, September 16 to 17, Saturn will appear near the full Moon. As evening twilight ends (at 8:12 PM EDT) Saturn will be 6 degrees to the left of the Moon. When the Moon reaches its highest for the night (at 12:17 AM) Saturn will be 4 degrees to the upper left. By the time morning twilight begins (at 5:54 AM) the Moon will be 1 degree above the west-southwestern horizon with Saturn 1 degree above the Moon. For parts of western North America and across the Pacific Ocean towards Australia the Moon will pass in front of Saturn. See http://lunar-occultations.com/iota/planets/0917saturn.htm for a map and information on the areas that will see this occultation.
      Tuesday morning, September 17, will be the last morning that Mercury will be above the horizon as morning twilight begins (at 5:54 AM EDT).
      As mentioned above, the full Moon will be Tuesday night, September 17, at 10:35 PM EDT. This will be on Wednesday from Newfoundland and Greenland Time eastward across Eurasia, Africa, and Australia to the International Date Line. Most commercial calendars are based on Greenwich or Universal Time and will show this full Moon on Wednesday. The Moon will appear full for about three days from Monday evening through Thursday morning.
      This will be a partial lunar eclipse. The Moon will start entering the partial shadow of the Earth at 8:41 PM EDT. The slight dimming of the Moon will be difficult to notice until the top edge of the Moon starts entering the full shadow at 10:13 PM. The peak of the eclipse will be at 10:44 PM with just the top 8.4% of the Moon in full shadow. The Moon will finish exiting the full shadow at 11:16 PM and the partial shadow on Wednesday morning at 12:47 AM.
      This will be the second of four consecutive supermoons, appearing larger than last month’s supermoon and effectively tied with the full Moon in October for the closest full Moon of the year.
      Tuesday and Wednesday evenings, September 17 and 18, the star Spica will appear a little over 2 degrees from the bright planet Venus. On Tuesday evening as evening twilight ends (at 8:10 PM EDT) Spica will be to the lower left of Venus and on the verge of setting on the west-southwestern horizon. Wednesday evening Spica will be a few hundredths of a degree closer and will appear below Venus, but will set about 2 minutes before evening twilight ends.
      Wednesday morning September 18, at 9:29 AM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      Thursday morning, September 19, will be the last morning the planet Saturn will be above the western horizon as morning twilight begins.
      If you are interested in spotting the planet Neptune through a telescope, Friday evening, September 20, will be when it will be at its closest and brightest for the year. Neptune will reach its highest in the sky early Saturday morning (at 1:02 AM EDT).
      Saturday night into Sunday morning, September 21 to 22, the Pleiades star cluster will appear near the waning gibbous Moon. The Pleiades will be 5 degrees to the lower left as they rise on the east-northeastern horizon (at 9:23 PM EDT), 1.5 degrees to the upper left by the time the Moon reaches its highest for the night (at 4:44 AM), and less than 1 degree to the upper left as morning twilight begins (at 5:59 AM). The Moon will actually pass through the Pleiades (at about 8 AM) when daylight will mask these stars from view.
      Sunday morning, September 22, will be the first morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting it at visual magnitude 4. Unless it breaks apart, this comet is likely to brighten each morning until October 4 (after which it will no longer be above the horizon before twilight begins).
      Sunday morning, September 22, at 8:44 AM EDT, will be the autumnal equinox, the astronomical end of summer and start of fall.
      Monday night into Tuesday morning, September 23 to 24, the bright planet Jupiter will appear to the lower right of the waning half-full Moon. Jupiter will be 6 degrees to the lower right as it rises on the east-northeastern horizon (at 10:54 PM EDT). Jupiter will shift slightly clockwise as it moves away from the Moon.
      Thursday afternoon, September 24, the waning Moon will appear half-full as it reaches its last quarter at 2:50 PM EDT (when we can’t see it).
      Wednesday morning, September 25, the planet Mars will appear below the waning crescent Moon. Mars will be 6 degrees below the Moon as it rises on the east-northeastern horizon (at 12:16 AM EDT). Mars will be 5 degrees to the lower right as morning twilight begins (at 6:01 AM).
      Thursday morning, September 26, the star Pollux (the brighter of the twin stars in the constellation Gemini the twins) will appear near the waning crescent Moon. Pollux will be 3 degrees to the lower left as it rises on the northeastern horizon (at 12:47 AM EDT) and will be 2 degrees to the upper left by the time morning twilight begins (at 6:02 AM).
      Friday afternoon, September 27, at around 2 PM EDT, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to the Sun. This comet has an inbound orbital period of millions of years and may gain enough energy from this flyby of the Sun to leave the solar system forever.
      Sunday morning, September 29, the star Regulus will appear near the waning crescent Moon. As Regulus rises on the east-northeastern horizon (at 4:01 AM EDT) it will be 2.5 degrees to the lower right of the Moon. Morning twilight will begin 2 hours later (at 6:05 AM) with Regulus 3 degrees to the right.
      Monday afternoon, September 30, the planet Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth, it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of twilight on the west-southwestern horizon towards the end of October (depending upon viewing conditions).
      Wednesday, October 2, at 2:46 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and is usually not visible. For much of the Pacific Ocean as well as the southern part of South America, part of Antarctica, and a thin slice of the southwestern Atlantic, the Moon will block some of the Sun in a partial eclipse. For a narrow strip from the Pacific south of the Hawaiian Islands across the Pacific, part of Chile and Argentina, and into the southwestern Atlantic Ocean, the Moon will actually pass in front of the Sun, blocking most of it from view in an annular solar eclipse. Because the Moon will be at apogee (its farthest from the Earth) just 70 minutes later (at 3:56 PM) it will not block the entire Sun from view and this will not be a total solar eclipse.
      The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Sundown on Wednesday, October 2, will be the start of Rosh Hashanah (the Head of the Year), the two-day Jewish New Year celebration that will end at sundown on Friday, October 4. Rosh Hashanah is the first of a series of holidays in Tishrei, the first month of the Hebrew calendar. The tenth day of Tishrei is Yom Kippur, the Day of Atonement. The 10 days from Rosh Hashanah to Yom Kippur, called the Days of Awe, are a time to reflect on the mistakes of the past year and make resolutions for the new year. The fifteenth day of Tishrei (close to the full Moon after next) is the start of the 7-day Sukkot holiday.
      The ninth month of the Chinese year of the Dragon starts on Thursday, October 3.
      In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday evening, October 3, will probably mark the beginning of Rabiʽ al-Thani, also known as Rabi’ al-Akhirah.
      Friday, October 4, will be the last morning Comet C/2023 A3 (Tsuchinshan-ATLAS) will be above the horizon before morning twilight begins, with the current brightness curve predicting a visual magnitude near 3, similar in brightness to many visible stars. It may be visible to the naked eye under dark sky conditions and even more impressive through binoculars or a telescope.
      Saturday evening, October 5, you may be able to see the thin waxing crescent Moon 4.5 degrees to the lower left of the bright planet Venus. As evening twilight ends (at 7:41 PM EDT) the Moon will be a degree above the west-southwestern horizon. The Moon will set first 14 minutes later (at 7:55 PM).
      Monday evening, October 7, the bright star Antares will appear 2 degrees to the right of the waxing crescent Moon. As evening twilight ends (at 7:38 PM EDT) the Moon will be 11 degrees above the southwestern horizon. Antares will set first about 20 minutes later (at 9 PM).
      Thursday afternoon, October 10, the Moon will appear half-full as it reaches its first quarter at 2:55 PM EDT.
      Saturday morning, October 12, at 11:10 AM, Comet C/2023 A3 (Tsuchinshan-ATLAS) will be at its closest to Earth. If it survives its pass by the Sun this will likely be when it will be near its brightest. Although it will be on the horizon as evening twilight ends on Friday, our first chance to see it above the horizon as it emerges from the glow of dusk likely will be Saturday evening, when the comet will be 4 degrees above the western horizon as evening twilight ends (at 7:31 PM EDT), similar in altitude and to the right of Venus. Over the next few nights the comet will likely dim as it moves away from the Earth, but also appear higher in the sky and set later each evening, giving us more time and darker skies to look for this comet. As evening twilight ends on October 13 it will be 10 degrees above the western horizon, 12 degrees on October 14, 16 degrees on October 15, etc. Current brightness curves predict it will dim quickly and will be below magnitude 6 by the end of October. How bright the comet will be and how quickly it actually dims will depend upon the gas and dust it is giving off, which can vary quickly and unpredictably, but it could be a good show in the evenings after October 12.
      Monday evening, October 14, the planet Saturn will appear near the waxing gibbous Moon. As evening twilight ends (at 7:28 PM EDT) Saturn will be 4 degrees to the upper right. The Moon will reach its highest for the night about 3.5 hours later (at 10:53 PM) with Saturn 5 degrees to the lower right. The pair will continue to separate, with Saturn setting first 5 hours after that (at 4:09 AM). For parts of Southern Asia and Africa the Moon will block Saturn from view, see http://lunar-occultations.com/iota/planets/1014saturn.htm for a map and information on the areas that will acually see this occultation.
      Wednesday evening, October 16, at 8:57 PM EDT, the Moon will be at perigee, its closest to the Earth for this orbit.
      The full Moon after next will be Thursday morning, October 17, 2024, at 7:26 AM EDT. This will be late Wednesday night in the International Date Line West time zone and early Friday morning from New Zealand Time eastwards to the International Date Line. This will be the third of four consecutive supermoons (and the brightest by a tiny margin). The Moon will appear full for about 3 days around this time, from Tuesday evening through Friday morning.
      Keep Exploring Discover More Topics From NASA
      Night Sky Network



      Explore the Night Sky



      Tips & Guides



      Skywatching


      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The public is invited to celebrate International Observe the Moon Night on Saturday, Sept. 14, from 6 to 9 p.m. EDT at NASA Goddard’s Visitor Center in Greenbelt, Maryland.
      International Observe the Moon Night is a time to come together with fellow Moon enthusiasts and curious people around the world. The public is invited to learn about lunar science and exploration, take part in celestial observations, and honor cultural and personal connections to the Moon.
      Save the date! International Observe the Moon Night is September 14, 2024!NASA During the Goddard event, attendees will be able to participate in a variety of interactive hands-on activities. There will also be a photo booth, Moon-themed presentations, and lunar and astronomical observing with telescopes. 
      This free event is open to the public and will occur rain or shine.
      International Observe the Moon Night occurs annually in September or October, when the Moon is around first quarter – a great phase for evening observing. Last year, almost a million people participated in 123 countries and all 7 continents. This year, NASA is celebrating 15 years of the program!
      International Observe the Moon Night is sponsored by NASA’s LRO (Lunar Reconnaissance Orbiter) mission and the Solar System Exploration Division of NASA’s Goddard Space Flight Center, with support from many partners. LRO is managed by Goddard for the Science Mission Directorate at NASA Headquarters in Washington.
      No registration is needed.
      To participate in International Observe the Moon Night from wherever you may be, tune into our NASA+ broadcast or watch live streams of the Moon from telescopes around the world on our Live Streams page on Sept. 14: https://moon.nasa.gov/observe-the-moon-night/participate/live-streams/.
      For directions to the Goddard Visitor Center, go to:
      https://www.nasa.gov/centers/goddard/visitor/directions/index.html
      To learn more about the program, visit:
      https://moon.nasa.gov/observe-the-moon-night
      For more information about LRO, visit:
      https://science.nasa.gov/mission/lro
      Share
      Details
      Last Updated Sep 09, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth's Moon Lunar Reconnaissance Orbiter (LRO) Explore More
      2 min read Artemis IV: Gateway Gadget Fuels Deep Space Dining
      Learn about the handy device NASA is developing to help astronauts rehydrate their meals aboard…
      Article 4 days ago 2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 3 weeks ago 4 min read Super Blue Moons: Your Questions Answered
      The Moon of August 30-31, 2023, is a full moon, a supermoon, and a blue…
      Article 3 weeks ago View the full article
    • By NASA
      3 Min Read September’s Night Sky Notes: Marvelous Moons
      Jupiter’s largest moons, from left to right: Io, Europa, Ganymede, Callisto. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      September brings the gas giants Jupiter and Saturn back into view, along with their satellites. And while we organize celebrations to observe our own Moon this month, be sure to grab a telescope or binoculars to see other moons within our Solar System! We recommend observing these moons (and planets!) when they are at their highest in the night sky, to get the best possible unobstructed views.
      The More the Merrier
      As of September 2024, the ringed planet Saturn has 146 identified moons in its orbit. These celestial bodies range in size; the smallest being a few hundred feet across, to Titan, the second largest moon in our solar system.
      The Saturnian system along with various moons around the planet Saturn: Iapetus, Titan, Enceladus, Rhea, Tethys, and Dione. Stellarium Web Even at nearly 900 million miles away, Titan can be easily spotted next to Saturn with a 4-inch telescope, under urban and suburban skies, due to its sheer size. With an atmosphere of mostly nitrogen with traces of hydrogen and methane, Titan was briefly explored in 2005 with the Huygens probe as part of the Cassini-Huygens mission, providing more information about the surface of Titan. NASA’s mission Dragonfly is set to explore the surface of Titan in the 2030s.
      Enceladus is an icy world much like Hoth, except that it has an ocean under its frozen crust. Astronomers believe this moon of Saturn may be a good candidate for having extraterrestrial life beneath its surface. NASA/ESA/JPL-Caltech/Space Science Institute Saturn’s moon Enceladus was also explored by the Cassini mission, revealing plumes of ice that erupt from below the surface, adding to the brilliance of Saturn’s rings. Much like our own Moon, Enceladus remains tidally locked with Saturn, presenting the same side towards its host planet at all times.
      The Galilean Gang
      The King of the Planets might not have the most moons, but four of Jupiter’s 95 moons are definitely the easiest to see with a small pair of binoculars or a small telescope because they form a clear line. The Galilean Moons – Ganymede, Callisto, Io, and Europa – were first discovered in 1610 and they continue to amaze stargazers across the globe.
      The Jovian system: Europa, Io, Ganymede, and Callisto. Stellarium Web Ganymede: largest moon in our solar system, and larger than the planet Mercury, Ganymede has its own magnetic field and a possible saltwater ocean beneath the surface. Callisto: this heavily cratered moon is the third largest in our solar system. Although Callisto is the furthest away of the Galilean moons, it only takes 17 days to complete an orbit around Jupiter. Io: the closest moon and third largest in this system, Io is an extremely active world, due to the push and pull of Jupiter’s gravity. The volcanic activity of this rocky world is so intense that it can be seen from some of the largest telescopes here on Earth. Europa: Jupiter’s smallest moon also happens to be the strongest candidate for a liquid ocean beneath the surface. NASA’s Europa Clipper is set to launch October 2024 and will determine if this moon has conditions suitable to support life. Want to learn more? Rewatch the July 2023 Night Sky Network webinar about Europa Clipper here. Be sure to celebrate International Observe the Moon Night here on Earth September 14, 2024, leading up to the super full moon on September 17th! You can learn more about supermoons in our mid-month article on the Night Sky Network page!
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut aboard the International Space Station photographed wildfire smoke from Nova Scotia billowing over the Atlantic Ocean in May 2023. Warm weather and lack of rain fueled blazes across Canada last year, burning 5% of the country’s forests.NASA Extreme wildfires like these will continue to have a large impact on global climate.
      Stoked by Canada’s warmest and driest conditions in decades, extreme forest fires in 2023 released about 640 million metric tons of carbon, NASA scientists have found. That’s comparable in magnitude to the annual fossil fuel emissions of a large industrialized nation. NASA funded the study as part of its ongoing mission to understand our changing planet.
      The research team used satellite observations and advanced computing to quantify the carbon emissions of the fires, which burned an area roughly the size of North Dakota from May to September 2023. The new study, published on Aug. 28 in the journal Nature, was led by scientists at NASA’s Jet Propulsion Laboratory in Southern California.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Carbon monoxide from Canada wildfires curls thousands of miles across North America in this animation showing data from summer 2023. Lower concentrations are shown in purple; higher concentrations are in yellow. Red triangles indicate fire hotspots.NASA’s Goddard Space Flight Center They found that the Canadian fires released more carbon in five months than Russia or Japan emitted from fossil fuels in all of 2022 (about 480 million and 291 million metric tons, respectively). While the carbon dioxide (CO2) emitted from both wildfires and fossil fuel combustion cause extra warming immediately, there’s an important distinction, the scientists noted. As the forest regrows, the amount of carbon emitted from fires will be reabsorbed by Earth’s ecosystems. The CO2 emitted from the burning of fossil fuels is not readily offset by any natural processes.
      An ESA (European Space Agency) instrument designed to measure air pollution observed the fire plumes over Canada. The TROPOspheric Monitoring Instrument, or TROPOMI, flies aboard the Sentinel 5P satellite, which has been orbiting Earth since 2017. TROPOMI has four spectrometers that measure and map trace gases and fine particles (aerosols) in the atmosphere.
      The scientists started with the end result of the fires: the amount of carbon monoxide (CO) in the atmosphere during the fire season. Then they “back-calculated” how large the emissions must have been to produce that amount of CO. They were able to estimate how much CO2 was released based on ratios between the two gases in the fire plumes.  
      “What we found was that the fire emissions were bigger than anything in the record for Canada,” said Brendan Byrne, a JPL scientist and lead author of the new study. “We wanted to understand why.”
      Warmest Conditions Since at Least 1980
      Wildfire is essential to the health of forests, clearing undergrowth and brush and making way for new plant life. In recent decades, however, the number, severity, and overall size of wildfires have increased, according to the U.S. Department of Agriculture. Contributing factors include extended drought, past fire management strategies, invasive species, and the spread of residential communities into formerly less developed areas.
      To explain why Canada’s fire season was so intense in 2023, the authors of the new study cited tinderbox conditions across its forests. Climate data revealed the warmest and driest fire season since at least 1980. Temperatures in the northwest part of the country — where 61% of fire emissions occurred — were more than 4.5 degrees Fahrenheit (2.6 degrees Celsius) above average from May through September. Precipitation was also more than 3 inches (8 centimeters) below average for much of the year.
      Driven in large part by these conditions, many of the fires grew to enormous sizes. The fires were also unusually widespread, charring some 18 million hectares of forest from British Columbia in the west to Quebec and the Atlantic provinces in the east. The area of land that burned was more than eight times the 40-year average and accounted for 5% of Canadian forests.
      “Some climate models project that the temperatures we experienced last year will become the norm by the 2050s,” Byrne said. “The warming, coupled with lack of moisture, is likely to trigger fire activity in the future.”
      If events like the 2023 Canadian forest fires become more typical, they could impact global climate. That’s because Canada’s vast forests compose one of the planet’s important carbon sinks, meaning that they absorb more CO2 from the atmosphere than they release. The scientists said that it remains to be seen whether Canadian forests will continue to absorb carbon at a rapid rate or whether increasing fire activity could offset some of the uptake, diminishing the forests’ capacity to forestall climate warming.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      Written by Sally Younger
      2024-113
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      Earth Climate Change Earth Science Water on Earth Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 45 mins ago 9 min read Looking Back on Looking Up: The 2024 Total Solar Eclipse
      Introduction First as a bite, then a half Moon, until crescent-shaped shadows dance through the…
      Article 6 days ago 3 min read Entrepreneurs Challenge Prize Winner Uses Artificial Intelligence to Identify Methane Emissions
      The NASA Science Mission Directorate (SMD) instituted the Entrepreneurs Challenge to identify innovative ideas and…
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 9 min read
      Looking Back on Looking Up: The 2024 Total Solar Eclipse
      Credit: NASA’s Glenn Research Center (GRC) Introduction
      First as a bite, then a half Moon, until crescent-shaped shadows dance through the leaves and the temperature begins to drop – a total solar eclipse can be felt growing in the atmosphere. As the sky darkens in the few minutes before totality, the sounds of animals begin to dissipate along with the vibrancy of red and orange hues, and we enter the mesopic zone, or twilight vision. All is quiet in these cold, silvery-blue moments, until the Moon lines up perfectly with the Sun from our viewpoint on Earth – an odd quirk of the Moon–Earth system, and an occurrence that does not exist elsewhere in the solar system.
      Millions of people gazed up at the sky on April 8, 2024, as a total solar eclipse darkened the skies across a thin ribbon of North America – spanning Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada – see Figure 1.
      Figure 1. A total solar eclipse was visible along a narrow track stretching from Texas to Maine on April 8, 2024. A partial eclipse was visible throughout all 48 contiguous U.S. states. Figure credit: NASA Scientific Visualization Studio A pearly, iridescent halo lined the perimeter of the Moon as it crossed in front of the Sun, revealing the Sun’s corona – see Photo 1. Solar prominences – bright features made of plasma flowing outwards through tangled structures of magnetic fields along the Sun’s surface – were observable as reddish-pink dots rising from the edges of the eclipsed Sun – see Photo 2.
      Photo 1. The moment of totality in Cleveland, OH. Photo credit: NASA’s Glenn Research Center (GRC) Photo 2. Solar prominence [lower right of the solar disc] seen during totality in Cleveland, OH. Photo credit: GRC Snapshots of NASA Science Outreach Along the Path of Totality
      Over 400 NASA staff took up positions along the path of totality, hosting various events to engage the public in outreach activities spanning the scope of NASA Science. NASA staff hosted 14 “SunSpot” locations across 7 states (Texas, Arkansas, Ohio, Indiana, Pennsylvania, New York, and Maine), including 224 NASA engagement and Science Activation events. As an example, Zoe Jenkins [NASA Headquarters/Arctic Slope Regional Corporation (ASRC) Federal—Graphic Designer] was stationed in Maine to view the eclipse –see Photos 3–4. More information about events at these SunSpots is available at the eclipse website. The Science Activation Program furthered NASA’s message, reaching all 50 states through public events by sharing information and providing professional development programming for educators. (To learn more about NASA’s Science Activation Program, see NASA Earth Science and Education Update: Introducing the Science Activation Program, The Earth Observer, 35:6, 6–12.)
      Photo 3. NASA Eclipse celebration at the SunSpot in Houlton, ME. Photo credit: Zoe Jenkins/NASA Headquarters (HQ)/Arctic Slope Regional Corporation (ASRC) Federal Photo 4. View of the black hole of the Moon’s shadow over the Sun during totality in Houlton, ME. Photo credit: Zoe Jenkins Among the SunSpot locations across the path of totality, NASA’s Science Support Office (SSO) staffed events at two of them: in Cleveland, OH and Kerrville, TX.
      The Great Lakes Science Center and its two partners – NASA’s Glenn Research Center (GRC) and the Cleveland Orchestra – presented “Total Eclipse Fest 2024,” a three-day celestial celebration at North Coast Harbor in downtown Cleveland beginning April 6 and culminating on the day of the eclipse. The event included free concerts, performances, speakers, and hands-on science activities.
      At the heart of the festival was the “NASA Village,” an immersive experience featuring the agency’s major missions and projects aimed at advancing space exploration and revolutionizing air travel. Figure 2 shows the location of each outreach tent in the village, while Figure 3 provides descriptions of each activity. More than 36,000 attendees visited the NASA village over the three-day event.
      Exhibits focused on innovations in aeronautics, space, solar, and lunar science, and best practices for ensuring a safe solar eclipse viewing experience. Through virtual and augmented simulations, attendees had the opportunity to take a supersonic flight, walk on Mars, and visit the International Space Station. Attendees of all ages participated in hands-on activities and talked to NASA scientists and engineers about their work and how to join the NASA team. Attendees could also walk through Journey to Tomorrow, a traveling exhibit complete with interactive English and Spanish-language content, and see an Apollo-era Moon rock. Visitors also explored large-scale, inflatable displays of the X-59 plane designed to quiet supersonic air travel, the Space Launch System rocket slated to take the first woman and person of color to the Moon, and a Mars habitat concept. Throughout the NASA Village, attendees could take advantage of several photo opportunities, including iconic NASA cutouts and displays. NASA also hosted astronaut autograph signing sessions, as well as special guest “meet and greets.”
      Figure 2. Map of the “NASA Village” at the Eclipse festival in Cleveland, OH, hosted by GRC. See Figure 3 for activity descriptions. Figure credit: GRC Figure 3. Descriptions of each outreach activity stationed at individual tents within the NASA Village over the three-day festival. See Figure 2 for map. Figure credit: GRC A View of the Eclipse from Cleveland
      In Cleveland, the eclipse began at 1:59 PM EDT, with totality spanning 3:13–3:17 PM. The eclipse concluded at 4:28 PM. SSO staff supported total eclipse outreach from April 5–9, specifically engaging attendees at the Solar Science tent within the NASA Village and providing information about eclipse safety and heliophysics, and handing out items such as the NASA Science calendar, NASA tote bags, and other outreach materials. SSO also supported a NASA photo booth with eclipse-themed props and took hundreds of souvenir photos for visitors to remember their time at the festival – see Photos 5–9.
      Photo 5. SSO staff member Dalia Kirshenblat [NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology Inc.(GST)] handed out NASA Science calendars, eclipse glasses, posters, and other NASA outreach materials. The materials informed attendees about eclipse viewing safety and shared NASA science, engaging in topics that explained how eclipses occur. Photo credit: GRC Photo 6. Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] hands out eclipse posters and other outreach materials to attendees at Eclipse Fest 2024. Photo credit: GRC Photo 7. Steve Graham [GSFC/GST], Dalia Kirshenblat, and Danielle Kirshenblat [Space Telescope Science Institute (STScI)] pose with NASA SSO photo booth props at Eclipse Fest 2024. SSO staff took hundreds of pictures of visitors with the photo booth props as keepsakes. Photo credit: NASA Photo 8. Dalia Kirshenblat and Danielle Kirshenblat watching the eclipse begin in Cleveland, OH, at approximately 2:00 PM EDT. Photo credit: NASA Photo 9. Steve Graham, Dalia Kirshenblat, Danielle Kirshenblat, and other Eclipse Fest attendees gaze at the celestial show unfolding above them as totality begins in Cleveland, OH, at approximately 3:13 PM EDT. Photo credit: Danielle Kirshenblat Eclipse Engagement in Texas
      In addition to the Cleveland eclipse festival, SSO staff members supported total eclipse engagement in Kerrville, TX, from April 5–9, including several small events at Cailloux Theatre, Doyle Community Center, Trailhead Garden, and Kerrville-Schreiner Park leading up to the eclipse. (While a bit more remote than Cleveland, Kerville was chosen as a SunSpot location during the total eclipse because it was also in the path of the October 2023 annular eclipse, NASA had outreach activities in Kerville for that eclipse as well). The events culminated on April 8 at Louise Hays Park. NASA’s impact on the community was wide-reaching, engaging approximately 4000 individual interactions with community members and visitors. The feedback was overwhelmingly positive and appreciative. On April 8, SSO provided astronaut handler support for NASA Astronaut Reid Wiseman – who will command the Artemis II Moon mission – during a “photos with an astronaut” session. SSO staff also escorted Wiseman to and from a main stage speaking engagement and the NASA broadcast engagement – see Photos 10–13.
      Photo 10. Ellen Gray [GSFC/KBR—Senior Outreach Specialist] engaging attendees in Kerrville, TX with various NASA Science outreach materials. Photo credit: NASA Photo 11. NASA Astronaut Reid Wiseman poses with a potential future astronaut and attendee at the Eclipse event in Kerrville, TX. Photo credit: NASA Photo 12. Astronaut Reid Wiseman speaks at a NASA broadcast in Kerrville, TX. Photo credit: NASA Photo 13. [left to right] Nicola Fox [NASA HQ—Associate Administrator for the Science Mission Directorate (SMD)], Alex Lockwood [NASA HQ—Strategic Engagement Lead], and Astronaut Reid Wiseman. Photo credit: NASA NASA Science Engagement Across the Agency
      As millions gazed at totality from the ground, NASA was conducting science from the skies. Atmospheric Perturbations around the Eclipse Path (APEP), a NASA sounding rocket mission, launched three rockets from NASA’s Wallops Flight Facility in Virginia to study how the sudden dip in sunlight that occurs during an eclipse affects the upper atmosphere. Each rocket deployed four scientific instruments that measured changes in electric and magnetic fields, density, and temperature – see Photo 14.
      Photo 14. The Atmospheric Perturbations launched around the Eclipse Period (APEP) sounding rocket during the total eclipse on April. This photo shows the third APEP sounding rocket – launched during the October 2023 annular eclipse – leaving the launchpad. Photo credit: WSMR Army Photo As part of the Nationwide Eclipse Ballooning Project, student teams constructed hundreds of balloons and launched them during the eclipse, encouraging students to consider careers in the STEM workforce.
      Also, two WB-57 aircraft carried instruments to further extend scientific observations made during the eclipse. By taking images above Earth’s atmosphere, scientists were able to see new details of structures in the middle and lower corona. The observations – taken with a camera that images in infrared and visible light at high resolution and high speed – could improve our understanding of the dust ring around the Sun and help search for asteroids that may orbit near the Sun. The WB-57 flights also carried instruments to learn more about the temperature and chemical composition of the corona and coronal mass ejections – or large bursts of solar material. By flying these instruments on a WB-57, the scientists extended their time in the Moon’s shadow by over two minutes from what could be achieved using ground-based observations. A third experiment used an ionosonde to study the ionosphere – the charged layer of Earth’s upper atmosphere. The device functions like a simple radar, sending out high frequency radio signals and listening for their echo rebounding off the ionosphere. The echoes allow researchers to measure how the ionosphere’s charge changed during the eclipse – see Photo 15.
      Photo 15. Pilots prepare for the 2024 total solar eclipse experiments on the NASA WB-57 aircraft on April 8, 2024 at Ellington Field in Houston, TX. Photo credit: NASA/James Blair The eclipse also provided an opportunity for the public to contribute to the NASA Citizen Science program – a project called Eclipse Soundscapes reached over 900 people during their training programs to prepare for the eclipse. Over 36,000 individual citizen scientists contributed more than 60,000 data submissions across the eclipse path, recording the reactions of wildlife before, during, and after this celestial event.
      As part of NASA’s Heliophysics Big Year to celebrate the Sun, NASA played a key role in enabling safe participation as well as working with new-to-NASA audiences. NASA’s Science Mission Directorate ordered and distributed 2.05 million eclipse glasses across the country, with distribution locations including K–12 schools, libraries, minority-serving institutions, community events, museums, partner organizations, underserved communities, science centers, and NASA personnel.
      As of April 8, Science Activation reached over 2000 educators across the country through programming designed to prepare educators for the eclipse and provide them with educational resources to train students in STEM. NASA broadcasted a livestream of engagement events on NASA+, the NASA App, NASA.gov, and NASA social media channels. By 4:30 PM EDT, NASA’s websites spiked (e.g., nasa.gov, science.nasa.gov, plus.nasa.gov, and ciencia.nasa.gov) with nearly 28.9 million views and 15.6 million unique visitors. At its peak, 1,458,212 people watched the eclipse broadcast live, experiencing the eclipse together through the eyes of NASA. Total viewership as of 4:30 PM EDT was 13,511,924.
      NASA’s Office of Communications Engagement Division organized at least 17 in-person and digital partner interactions, including several Major League Baseball games, Google eclipse safety Doodle and search effect, coverage of NASA on NASDAQ’s screen in Times Square, a solar songs request weekend on Third Rock Radio, and a Snoopy visit to the Cleveland sunspot. Several partners also interacted on social media, including Barbie, Cookie Monster, Elmo, Snoopy, LEGO, and other partner accounts.
      Conclusion
      The 2024 total eclipse brought joy and awe to millions, inspiring so many to look up, be curious about the natural world around them, and explore the sky. The next total solar eclipse will occur in 2026 and will be visible in Spain, a small area of Portugal, as well as Iceland, Greenland, and Russia. We won’t see another total eclipse in the U.S. until 2044.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Movie. Timelapse of the eclipse’s totality in Cleveland, OH. Video credit: Danielle Kirshenblat Dalia Kirshenblat
      NASA’s Goddard Space Flight Center/Global Science and Technology, Inc.
      dalia.p.zelmankirshenblat@nasa.gov
      Share








      Details
      Last Updated Aug 22, 2024 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...