Members Can Post Anonymously On This Site
Perseverance Kicks off the Crater Rim Campaign!
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Danah Tommalieh, commercial pilot and engineer at Reliable Robotics, inputs a flight plan at the control center in Mountain View, California, ahead of remotely operating a Cessna 208 aircraft at Hollister municipal airport in Hollister, California.NASA/Don Richey NASA recently began a series of flight tests with partners to answer an important aviation question: What will it take to integrate remotely piloted or autonomous planes carrying large packages and cargo safely into the U.S. airspace? Researchers tested new technologies in Hollister, California, that are helping to investigate what tools and capabilities are needed to make these kinds of flights routine.
The commercial industry continues to make advancements in autonomous aircraft systems aimed at making it possible for remotely operated aircraft to fly over communities – transforming the way we will transport people and goods. As the Federal Aviation Administration (FAA) develops standards for this new type of air transportation, NASA is working to ensure these uncrewed flights are safe by creating the required technological tools and infrastructure. These solutions could be scaled to support many different remotely piloted aircraft – including air taxis and package delivery drones – in a shared airspace with traditional crewed aircraft.
“Remotely piloted aircraft systems could eventually deliver cargo and people to rural areas with limited access to commercial transportation and delivery services,” said Shivanjli Sharma, aerospace engineer at NASA’s Ames Research Center in California’s Silicon Valley. “We’re aiming to create a healthy ecosystem of many different kinds of remotely piloted operations. They will fly in a shared airspace to provide communities with better access to goods and services, like medical supply deliveries and more efficient transportation.”
During a flight test in November, Reliable Robotics, a company developing an autonomous flight system, remotely flew its Cessna 208 Caravan aircraft through pre-approved flight paths in Hollister, California.
Although a safety pilot was aboard, a Reliable Robotics remote pilot directed the flight from their control center in Mountain View, more than 50 miles away.
Cockpit of Reliable Robotics’ Cessna 208 aircraft outfitted with autonomous technology for remotely-piloted operations.NASA/Brandon Torres Navarrete Congressional staffers from the United States House and Senate’s California delegation joined NASA Deputy Associate Administrator for Aeronautics Research Mission Directorate, Carol Caroll, Ames Aeronautics Director, Huy Tran, and other Ames leadership at Reliable Robotics Headquarters to view the live remote flight.
Researchers evaluated a Collins Aerospace ground-based surveillance system’s ability to detect nearby air traffic and provide the remote pilot with information in order to stay safely separated from other aircraft in the future.
Initial analysis shows the ground-based radar actively surveilled the airspace during the aircraft’s taxi, takeoff, and landing. The data was transmitted from the radar system to the remote pilot at Reliable Robotics. In the future, this capability could help ensure aircraft remain safely separated across all phases of fight.
A Reliable Robotics’ modified Cessna 208 aircraft flies near Hollister Airport. A Reliable Robotics pilot operated the aircraft remotely from the control center in Mountain View.NASA/Brandon Torres Naverrete While current FAA operating rules require pilots to physically see and avoid other aircraft from inside the cockpit, routine remotely piloted aircraft will require a suite of integrated technologies to avoid hazards and coordinate with other aircraft in the airspace.
A radar system for ground-based surveillance offers one method for detecting other traffic in the airspace and at the airport, providing one part of the capability to ensure pilots can avoid collision and accomplish their desired missions. Data analysis from this testing will help researchers understand if ground-based surveillance radar can be used to satisfy FAA safety rules for remotely piloted flights.
NASA will provide analysis and reports of this flight test to the FAA and standards bodies.
“This is an exciting time for the remotely piloted aviation community,” Sharma said. “Among other benefits, remote operations could provide better access to healthcare, bolster natural disaster response efforts, and offer more sustainable and effective transportation to both rural and urban communities. We’re thrilled to provide valuable data to the industry and the FAA to help make remote operations a reality in the near future.”
Over the next year, NASA will work with additional aviation partners on test flights and simulations to test weather services, communications systems, and other autonomous capabilities for remotely piloted flights. NASA researchers will analyze data from these tests to provide a comprehensive report to the FAA and the community on what minimum technologies and capabilities are needed to enable and scale remotely piloted operations.
This flight test data analysis is led out of NASA Ames under the agency’s Air Traffic Management Exploration project. This effort supports the agency’s Advanced Air Mobility mission research, ensuring the United States stays at the forefront of aviation innovation.
Share
Details
Last Updated Jan 07, 2025 Related Terms
Ames Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Airspace Operations and Safety Program Drones & You Explore More
3 min read How a NASA Senior Database Administrator Manifested her Dream Job
Article 2 weeks ago 16 min read NASA Ames Astrogram – December 2024
Article 3 weeks ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Perseverance Blasts Past the Top of Jezero Crater Rim
This SuperCam Remote Micro-Imager (RMI) mosaic shows part of the target “Duran,” observed on Sol 1357 near the top of Jezero crater’s rim. It was processed using a color-enhancing Gaussian stretch algorithm. NASA/JPL-Caltech/LANL/CNES/IRAP. I have always loved the mountains. Growing up on the flat plains of Midwestern USA, every summer I looked forward to spending a few days on alpine trails while on vacation. Climbing upward from the trailhead, the views changed constantly. After climbing a short distance, the best views were often had by looking back down on where we had started. As we climbed higher, views of the valleys below eventually became shrouded in haze. Near the top we got our last views of the region behind us; then it disappeared from view as we hiked over the pass and started down the other side. Approaching the summit held a special reward, as the regions beyond the pass slowly revealed themselves. Frequent stops to catch our breath during our ascent were used to check the map to identify the new peaks and other features that came into view. Sometimes the pass was an exciting gateway to a whole new area to explore.
This ever-changing landscape has been our constant companion over the last five months as Perseverance first climbed out of Neretva Vallis, then past “Dox Castle,” and “Pico Turquino.” We stopped at “Faraway Rock” on Sol 1282 to get a panorama of the crater floor. More recently, we could see many more peaks of the crater rim. As Perseverance crested the summit of “Lookout Hill,” half a mile (800 meters) above the traverse’s lowest point, we got our first views beyond the crater rim, out into the great unknown expanse of Mars’ Nili Planum, including the upper reaches of Neretva Vallis and the locations of two other candidate landing sites that were once considered for Perseverance. As the rover crested the summit, Mastcam-Z took a large panoramic mosaic, and team members are excitedly poring over the images, looking at all the new features. With Perseverance’s powerful cameras we can analyze small geological features such as boulders, fluvial bars, and dunes more than 5 miles (8 kilometers) distant, and major features like mountains up to 35 miles (60 kilometers) away. One of our team members excitedly exclaimed, “This is an epic moment in Mars exploration!”
While Curiosity has been climbing “Mount Sharp” for 10 years, and Spirit and Opportunity explored several smaller craters, no extraterrestrial rover has driven out of such a huge crater as Jezero to see a whole new “continent” ahead. We are particularly excited because it is potentially some of the most ancient surface on the Red Planet. Let’s go explore it!
Perseverance is now in Gros Morne quad, named for a beautiful Canadian national park in Newfoundland, and we will be naming our targets using locations and features in the national park. For the drive ahead, described in a video in a recent press release, our next destination is on the lower western edge of the Jezero crater rim at a region named “Witch Hazel Hill.”
Perseverance made more than 250 meters of progress over the weekend (about 820 feet) and is already at the upper part of Witch Hazel Hill, a location called “South Arm.” Much of the climb up the crater rim was on sandy material without many rocks to analyze. Witch Hazel Hill appears to have much more exposed rock, and the science team is excited about the opportunity for better views and analyses of the geology directly beneath our wheels.
Written by Roger C. Wiens, Principal Investigator of the SuperCam instrument, Purdue University
Share
Details
Last Updated Dec 19, 2024 Related Terms
Blogs Explore More
3 min read Sols 4396-4397: Roving in a Martian Wonderland
Article
2 days ago
2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte
Article
3 days ago
3 min read Sols 4391-4392: Rounding the Bend
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
“During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
“The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
First Stop: ‘Witch Hazel Hill’
With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
“The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-174
Share
Details
Last Updated Dec 12, 2024 Related Terms
Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A scientific balloon is inflated during NASA’s 2023 Antarctic campaign in McMurdo, Antarctica. NASA/Scott Battaion NASA’s Scientific Balloon Program has returned to Antarctica’s icy expanse to kick off the annual Antarctic Long-Duration Balloon Campaign, where two balloon flights will carry a total of nine missions to near space. Launch operations will begin mid-December from the agency’s Long Duration Balloon camp located near the U.S. National Science Foundation’s McMurdo Station on the Ross Ice Shelf.
“Antarctica is our cornerstone location for long-duration balloon missions, and we always look forward to heading back to ‘the ice,’” said Andrew Hamilton, acting chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “It’s a tremendous effort to stage a campaign like this in such a remote location, and we are grateful for the support provided to us by the U.S. National Science Foundation, New Zealand, and the U.S. Air Force.”
This year’s Antarctic campaign includes investigations in astrophysics, space biology, heliospheric research, and upper atmospheric research, along with technology demonstrations. The campaign’s two primary missions include:
GAPS (General Anti-Particle Spectrometer), led by Columbia University in New York, is an experiment to detect anti-matter particles produced by dark matter interactions. The anti-particles stemming from these interactions in our galaxy can only be observed from a suborbital platform or in space, since Earth’s atmosphere shields us from the cosmic radiation. GAPS aims to provide an unprecedented level of sensitivity to certain classes of anti-particles, allowing the exploration of a currently unexplored energy regime of the elusive dark matter. Salter Test Flight Universal, led by NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, will test and validate long-duration balloon and subsystems, while supporting several piggyback missions on the flight. Piggyback missions, or smaller payloads, riding along with the Salter Test Flight Universal mission include:
MARSBOx (Microbes in Atmosphere for Radiation, Survival, and Biological Outcomes Experiments), led by the U.S. Naval Research Laboratory, will expose melanized fungus, called Aspergillus niger, to the stratosphere’s extreme radiation and temperature fluctuations, low atmospheric pressure, and absence of water — conditions much like the surface of Mars. Knowledge of how this fungus adapts to protect itself in this harsh environment could lead to the development of treatments to protect astronauts from high radiation exposure. EMIDSS-6 (Experimental Module for Iterative Design of Satellite Subsystems 6), led by National Polytechnical Institute − Mexico, is a technological platform with experimental design and operational validation of instrumentation that will collect and store data from the stratospheric environment to contribute to the study of climate change. SPARROW-6 (Sensor Package for Attitude, Rotation, and Relative Observable Winds – 6), led by NASA’s Balloon Program Office at NASA Wallops, will demonstrate relative wind measurements using an ultrasonic anemometer designed for the balloon float environment. WALRUSS (Wallops Atmospheric Light Radiation and Ultraviolet Spectrum Sensor), led by the Balloon Program Office at NASA Wallops, is a technology demonstration of a sensor package capable of measuring the total ultraviolet wavelength spectrum and ozone concentration. INDIGO (INterim Dynamics Instrumentation for Gondolas), led by the Balloon Program Office at NASA Wallops, is a data recorder meant to measure the shock, rotation, and attitude of the gondola during the launch, float, and landing phases of flight. Data will be used to improve understanding of the dynamics of flight and to inform the design of future components and hardware. The remaining two piggyback missions are led by finalists of NASA’s FLOATing DRAGON (Formulate, Lift, Observe, And Testing; Data Recovery And Guided On-board Node) Balloon Challenge, sponsored by the Balloon Program Office at NASA Wallops and managed by the National Institute of Aerospace. The challenge was created for student teams to design, build, and fly an autonomous aerial vehicle, deployed from a gondola during a high-altitude balloon flight. The teams’ student-built data vaults will be safely dropped from around 120,000 feet with the capability to target a specific landing point on the ground to manage risk. The missions participating in the Antarctic campaign are Purdue University’s Purdue DRAGONfly, and University of Notre Dame’s IRIS v3.
NASA’s zero-pressure balloons, used in the Antarctic campaign, are made of a thin plastic film and are capable of lifting up to 8,000 pounds of payload and equipment to altitudes above 99.8% of Earth’s atmosphere. Zero-pressure balloons, which typically have a shorter flight duration from the loss of gas during the day-to-night cycle, can support long-duration missions in polar regions during summer. The constant daylight of Antarctica’s austral summer and stable stratospheric wind conditions allow the balloon missions to remain in near space for days to weeks, gathering large amounts of scientific data as they circle the continent.
NASA’s Long Duration Balloon camp is located about eight miles from the U.S. National Science Foundation’s McMurdo Station on Antarctica’s Ross Ice Shelf. NASA/Scott Battaion NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 15 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division. NASA balloon launch operations from Antarctica receive logistical support from the U.S. National Science Foundation’s Office of Polar Programs, which oversees the U.S. Antarctic Program.
For mission tracking, click here. For more information on NASA’s Scientific Balloon Program, visit: https://www.nasa.gov/scientificballoons.
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Dec 10, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
7 min read NASA to Launch 8 Scientific Balloons From New Mexico
Article 4 months ago 7 min read NASA Balloons Head North of Arctic Circle for Long-Duration Flights
Article 7 months ago 4 min read GUSTO Breaks NASA Scientific Balloon Record for Days in Flight
Article 10 months ago View the full article
-
By NASA
7 Min Read 2024 Be An Astronaut Campaign
NASA astronaut Andrew Morgan tethered to the International Space Station during a spacewalk. Credits: NASA NASA astronauts have been traveling to space for more than six decades and living there continuously since 2000. Now, NASA’s Artemis program is preparing to land the first woman and the next man on the Moon. As NASA continues to expand human exploration in our solar system, we will need more than the currently active astronauts to crew spacecraft bound for deep-space destinations.
Every four years, NASA opens its doors and welcomes thousands of applicants to join a new class of astronauts that will push human spaceflight to new depths. Astronaut applications opened March 5, 2024, and closed April 16, 2024. In those 42 days, NASA’s 2024 Be An Astronaut Campaign used various platforms to promote the beauty of human spaceflight, explore opportunities to reach untapped and underserved audiences, encourage the younger generations to follow their dreams and pursue a career as an astronaut, and inspire the world about the capabilities we have as humans to explore farther than we ever have before.
Official “Be a NASA Astronaut” Video
To kick off the astronaut recruitment campaign, NASA, NASA Johnson, NASA Artemis, and NASA Astronauts accounts collaborated on a video narrated by Morgan Freeman on Instagram reaching over 9.7 million views. This video, seen below, was shared across agency social media platforms, YouTube, and digital sites to introduce the start of the astronaut application period.
The Universe is Calling: Apply to Be a NASA Astronaut, official NASA astronaut recruitment video featuring a voice over by Morgan Freeman. "Spaceflight is just one part of it. You are a team member before you are any thing in this role."
April Jordan
Manager of NASA Astronaut Selection
Throughout the campaign, #BeAnAstronaut was utilized to increase campaign awareness and engagement. This hashtag was used by 36 agency accounts and totaled 167 posts across the agency. With over 15,000 social media mentions, 256,655 total page views throughout the campaign, and news presence on the Today Show, TIME Magazine, Yahoo News, The New York Times, and more, the Be An Astronaut campaign was a successful and exciting project that inspired aspiring astronauts to follow their dreams.
2024 Astronaut Graduation
On March 5, 2024, not only did astronaut applications open, but the 2021 class of NASA astronaut candidates graduated, officially making them astronauts and eligible for spaceflight. These newly graduated astronauts created a superlative to demonstrate just how NASA’s astronaut corps works as a team and family as they passed the torch down to NASA’s next class of astronauts.
The 2024 astronaut graduating class gives you an insider’s look at not only the who’s who of their graduating class, but it allows you to get a glimpse of the accomplished astronauts’ personalities. To see them together as a group, connecting through laughter helps to illustrate how much they value team care. These classic superlatives give the scoop on which astronaut is the best dancer, the funniest, and more. Enjoy seeing a lighter side of “The Flies” in this fun and upbeat montage of the 2024 astronaut graduating class.
Astronaut Candidate Countdown
Our astronaut graduation countdown campaign celebrated the most recent graduating class of astronauts. The previous class completed two years of rigorous training at Johnson Space Center before they officially gained their wings. This campaign not only highlighted their achievements, but hopefully inspired potential candidates by showcasing the journey from trainee to astronaut. During the graduation ceremony, applications for the next astronaut class were announced, continuing the legacy of excellence and exploration.
NASA astronaut Luke Delaney poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Jessica Wittner poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Jack Hathaway poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Andre Douglas poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Nichole Ayers poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Marcos Berrios poses for the Astronaut Graduation Countdown.Credit: NASA Mohammed Bin Rashid Space Center astronaut Nora AlMatrooshi poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Anil Menon poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Deniz Burnham poses for the Astronaut Graduation Countdown.Credit: NASA Mohammed Bin Rashid Space Center astronaut Mohammed AlMulla poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Christina Birch poses for the Astronaut Graduation Countdown.Credit: NASA NASA astronaut Christopher Williams poses for the Astronaut Graduation Countdown.Credit: NASA
NASA Tumblr Thread
For many people, human spaceflight has been a part of their lives for decades. After years of exploring, hundreds of astronauts have shared their unique experiences with the world and inspired many to want to follow in their footsteps. With over 100 thousand impressions on Tumblr, NASA posted a unique thread on “5 Myths About Becoming an Astronaut”.
https://www.tumblr.com/nasa/132538793869/5-myths-about-becoming-an-astronaut NASA’s Tumblr thread on “5 Myths About Becoming an Astronaut”. Credit: NASA
STEM Pinterest Pin
Reaching various audiences of all ages, backgrounds, demographics, and experiences was key during the Be An Astronaut Campaign. Not only was it important for this campaign to reach qualifying applicants, but it was just as important to reach the aspiring astronauts of the younger generation.
NASA posted on Pinterest 10 ways students can kick-start their space journeys within NASA’s Office of STEM Engagement, or OSTEM. Through this post, NASA was able to reach over 40 thousand students and share ways to get involved with NASA’s missions.
A NASA astronaut during a spacewalk outside the International Space Station with the text, “10 Ways Students Can Prepare to #BeAnAstronaut”Credit: NASA "[NASA’s] decisions have led us to having an astronaut office that looks very much like America. You could reach in and grab any four people, and they would look like our crew.”
Victor glover
NASA Astronaut, Artemis II Pilot
NASA @ SXSW
A graphic of the International Space Station with the text, “Live from Space at SXSW: NASA Astronauts and Your Work in Orbit”.Credit: NASA NASA astronauts Jeanette Epps and Loral O’Hara joined NASA experts at the South by Southwest conference in Austin, Texas live from space on March 12, 2024. The astronauts joined a panel from aboard the International Space Station to discuss what it’s like to be an astronaut, how people can get involved with space station research and technology, and how to apply to become an astronaut.
Read More
Kristin Fabre, Jennifer Buchli, Leah Cheshier, Loral O’Hara & Jeanette Epps at Featured Session: Live from Space: NASA Astronauts & Your Work in Orbit as part of SXSW 2024 Conference and Festivals held at the Austin Convention Center on March 12, 2024 in Austin, Texas. Credit: Stephen Olker/SXSW Conference & Festivals via Getty Images)
Vice President Encourages Applicants
Vice President Kamala Harris quoted NASA on X to encourage people to apply to become an astronaut reaching more than 885 thousand users on the social media platform.
Vice President Kamala Harris’ post on X stating, “As Chair of the National Space Council, I am honored to witness our astronauts’ skill and determination first-hand. There is no typical path for an astronaut, and the next class of NASA astronauts will continue to lead the world in space exploration.”.
Astronaut Reddit AMA
Our Astronaut Recruitment Reddit AMA on March 20th was the top post on Reddit with 25 million subscribers, and stayed pinned to the top of the subreddit for several days. NASA astronauts Shannon Walker, Jessica Watkins, and Luke Delaney discussed what it takes to be an astronaut as well as personal insights into their journey.
Merriam-Webster Word of the Day: Astronaut
NASA astronaut and member of the recently graduated 2021 class of NASA astronauts, Deniz Burnham, participated in the “Word of the Day” series with Merriam-Webster defining the word ‘astronaut’. Just weeks after officially becoming an astronaut, Deniz’s video was featured on Merriam-Webster’s website and social media platforms.
NASA astronaut Deniz Burnham featured in Merriam-Webster’s word of the day video defining the word “astronaut”.
Houston, We Have a Podcast
On NASA’s top-rated podcast, “Houston We Have a Podcast,” our astronaut recruitment episode garnered over 4,000 plays on Apple Podcasts and more than 1,000 plays on Spotify. In this episode, the manager of NASA astronaut selection discussed the selection process and how to apply for an out-of-this-world career.
A lone spacesuit can be seen in the middle of the image, as a black shadow of the helmet reflects three question marks.Credit: NASA United States Army Astronaut Recruitment Video
NASA astronaut and U.S. Army Col. Anne McClain discussed her experience as an astronaut and how other members of the U.S. Army can apply to become an astronaut and travel to space like her. This video was posted on the U.S. Army’s social media as well as posted to YouTube reaching thousands of supporters in and of the military.
Col. Anne McClain, commander of the U.S. Army NASA detachment, shares information on eligibility as well as where and when to apply to become a NASA astronaut like herself. Credit: U.S. Army Read More
Become An Astronaut Webpage
NASA’s ‘Become An Astronaut’ webpage drove 246,655 viewers to the page throughout the duration of the recruitment campaign from internal and external collaborations across various digital platforms and events. Listing job requirements, frequently asked questions, and how to apply, the webpage consisted of 87.1% new visitors to the site and had almost 28 thousand referrals from Instagram.
NASA’s ‘Become An Astronaut’ webpage.Credit: NASA Read More
The 2024 Be An Astronaut Campaign ranged from March 5, 2024 to April 16, 2024 and successfully integrated various platforms, outreach opportunities, and educational resources into the recruitment of our next class of astronauts.
With over 15 thousand social media mentions, 2 thousand news outlet mentions, $4.6 million in publicity value, a 91% positive sentiment, and 195 countries involved in the conversation, the campaign was able to inspire NASA’s future space explorers and push the agency closer to returning to the Moon and going to Mars.
Share
Details
Last Updated Dec 09, 2024 Related Terms
Becoming an Astronaut Astronauts General Humans in Space Why Go To Space Explore More
3 min read Protected: Space Station Trajectory Data
There is no excerpt because this is a protected post.
Article 4 days ago 2 min read Protected: How do I Spot The Station?
Article 4 days ago 11 min read Protected: Spot the Station Frequently Asked Questions
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.