Jump to content

40 Years Ago: President Reagan Announces Teacher in Space Project


Recommended Posts

  • Publishers
Posted

On Aug. 27, 1984, President Ronald W. Reagan announced the Teacher in Space project as part of NASA’s Space Flight Participant Program to expand the space shuttle experience to a wider set of private citizens who would communicate the experience to the public. From 11,000 teacher applicants, each of the 50 states and territories selected two nominees for a total of 114. After meeting with each candidate, a review panel narrowed the field down to 10 finalists. These 10 underwent interviews and medical examinations. A senior review panel recommended S. Christa McAuliffe as the prime Teacher in Space to fly with the STS-51L crew, with Barbara R. Morgan as her backup. Tragically, the Jan. 28, 1986, Challenger accident prevented McAuliffe from realizing her dreams of teaching from space.

President Ronald W. Reagan announces the Teacher in Space project in 1984 NASA Administrator James M. Beggs Official emblem of the Teacher in Space project
Left: President Ronald W. Reagan announces the Teacher in Space project in 1984.Middle: NASA Administrator James M. Beggs. Right: Official emblem of the Teacher in Space project.

During a ceremony at the Department of Education recognizing outstanding public secondary schools, President Reagan announced the Teacher in Space project, saying,

It’s long been a goal of our space shuttle to someday carry private citizens in space. Until now, we hadn’t decided who the first citizen passenger would be. But today, I’m directing NASA to begin a search in all of our elementary and secondary schools, and to choose as the first citizen passenger in the history of our space program, one of America’s finest – a teacher. When that shuttle takes off, all of America will be reminded of the crucial role that teachers and education play in the life of our nation.

Later that day, NASA Administrator James M. Beggs held a news conference at NASA Headquarters in Washington, D.C., and provided more details, saying that although a teacher would lead off the Space Flight Participant Program, future selections would include journalists, poets, and artists. NASA released an Announcement of Opportunity on Nov. 8 detailing the requirements for teacher applicants and setting the target launch date of early 1986. From the approximately 11,000 applications received by the Feb. 1, 1985, deadline, the Council of Chief State School Officers coordinated the selection process, working with state, territorial, and agency review panels. On May 3, they announced the 114 nominees, two from each U.S. state, the District of Columbia, Puerto Rico, the U.S. Virgin Islands, Guam, Departments of Defense and State overseas schools, and Bureau of Indian Affairs schools. The nominees attended a workshop in Washington, D.C., June 22-27 focused on space education, because even those not selected planned to serve as space ambassadors for NASA. Each nominee met with the National Review Panel that selected the 10 finalists, announced on July 1.

The 10 Teacher in Space finalists during their visit to NASA’s Johnson Space Center (JSC) in Houston in July 1985 As part of their orientation, the 10 finalists toured JSC’s space shuttle mockups The 10 finalists experienced brief periods of weightlessness aboard NASA’s KC-135 aircraft
Left: The 10 Teacher in Space finalists during their visit to NASA’s Johnson Space Center (JSC) in Houston in July 1985. Middle: As part of their orientation, the 10 finalists toured JSC’s space shuttle mockups. Right: The 10 finalists experienced brief periods of weightlessness aboard NASA’s KC-135 aircraft.

The 10 finalists spent the week of July 7 at NASA’s Johnson Space Center (JSC) in Houston. During the week, the finalists underwent medical and psychological examinations, toured JSC’s facilities, and experienced episodes of weightlessness on the KC-135 aircraft. Following a brief stop at NASA’s Marshall Space Flight Center in Huntsville, Alabama, the finalists spent July 15-17 in Washington, D.C., undergoing a series of interviews with the NASA Space Flight Participant Committee, who recommended the Teacher in Space candidate and a backup to NASA Administrator Beggs.

Vice President George H.W. Bush announces the prime, S. Christa McAuliffe, and backup, Barbara R. Morgan, Teacher in Space candidates McAuliffe addresses the assembled crowd
Left: Vice President George H.W. Bush announces the prime, S. Christa McAuliffe, and backup, Barbara R. Morgan, Teacher in Space candidates. Right: McAuliffe addresses the assembled crowd.

On July 19, the 10 finalists assembled in the Roosevelt Room at the White House. Following Administrator Beggs’ introductory remarks, Vice President George H.W. Bush announced the Teacher in Space winners – S. Christa McAuliffe, a high school social studies teacher from Concord, New Hampshire, and her backup, Barbara R. Morgan, a second-grade teacher from McCall, Idaho. The other eight finalists continued to participate in the project by helping to develop McAuliffe’s lesson plans.

Barbara R. Morgan, second from left, and S. Christa McAuliffe, fourth from left, meet the STS-51L crew at NASA’s Johnson Space Center in Houston McAuliffe, left, and Morgan get their first taste of space food Morgan, left, and McAuliffe receive a briefing on the space shuttle galley
Left: Barbara R. Morgan, second from left, and S. Christa McAuliffe, fourth from left, meet the STS-51L crew at NASA’s Johnson Space Center in Houston. Middle: McAuliffe, left, and Morgan get their first taste of space food. Right: Morgan, left, and McAuliffe receive a briefing on the space shuttle galley.

McAuliffe and Morgan reported to JSC on Sept. 9, 1985, to begin training for their space shuttle mission. Assigned to STS-51L scheduled for January 1986, they met their fellow crewmates Commander Francis R. “Dick” Scobee, Pilot Michael J. Smith, and Mission Specialists Ellison S. Onizuka, Judith A. Resnik, and Ronald E. McNair. Gregory B. Jarvis, a Hughes Aircraft engineer, joined the crew as a second payload specialist in October. Their first week, McAuliffe and Morgan received basic orientation, including fitting for their flight suits and tasting space food. For the next four months, they trained with the rest of the crew on shuttle systems, emergency evacuation drills, and completed flights aboard T-38 jets and the KC-135 weightless aircraft.

The STS-51L crew receives a briefing on crew escape procedures The STS-51L crew receives a briefing on water evacuation Barbara R. Morgan and S. Christa McAuliffe pose in front of the space shuttle crew compartment trainer
Left: The STS-51L crew receives a briefing on crew escape procedures. Middle: The STS-51L crew receives a briefing on water evacuation. Right: Barbara R. Morgan, left, and S. Christa McAuliffe pose in front of the space shuttle crew compartment trainer.

At Houston’s Ellington Air Force Base, Barbara R. Morgan, Michael J. Smith, a photographer, S. Christa McAuliffe, and Francis R. “Dick” Scobee walk onto the tarmac toward T-38 jet trainers McAuliffe in the backseat of a T-38 prior to takeoff
Left: At Houston’s Ellington Air Force Base, Barbara R. Morgan, Michael J. Smith, a photographer, S. Christa McAuliffe, and Francis R. “Dick” Scobee walk onto the tarmac toward T-38 jet trainers. Right: McAuliffe in the backseat of a T-38 prior to takeoff.

Teacher in Space designee S. Christa McAuliffe in the backseat of a T-38 jet trainer during a right turn, with part of Galveston Island visible at left Michael J. Smith, left, Barbara R. Morgan, McAuliffe, and Francis R. “Dick” Scobee following training flights aboard T-38 jets
Left: Teacher in Space designee S. Christa McAuliffe in the backseat of a T-38 jet trainer during a right turn, with part of Galveston Island visible at left. Right: Michael J. Smith, left, Barbara R. Morgan, McAuliffe, and Francis R. “Dick” Scobee following training flights aboard T-38 jets.

Backup Teacher in Space Barbara R. Morgan, left, prime Teacher in Space S. Christa McAuliffe, Payload Specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck of the Shuttle Mission Simulator Teacher in Space McAuliffe, second from left, and her backup Morgan, get a taste of weightlessness aboard NASA’s KC-135, along with STS-61C Payload Specialist Congressman C. William “Bill” Nelson, now serving as NASA’s 14th administrator
Left: Backup Teacher in Space Barbara R. Morgan, left, prime Teacher in Space S. Christa McAuliffe, Payload Specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck of the Shuttle Mission Simulator. Right: Teacher in Space McAuliffe, second from left, and her backup Morgan, get a taste of weightlessness aboard NASA’s KC-135, along with STS-61C Payload Specialist Congressman C. William “Bill” Nelson, now serving as NASA’s 14th administrator.

Hydroponics in Microgravity Molecular Mixing Experiment Magnetic Effects Leapfrog in Microgravity – not an actual experiment
Training aboard the KC-135 for Teacher in Space demonstrations. Left: Hydroponics in Microgravity. Middle left: Molecular Mixing Experiment. Middle right: Magnetic Effects. Right: Leapfrog in Microgravity – not an actual experiment.

During her flight, McAuliffe planned to conduct two live lessons from space and record film for six demonstrations. The first lesson, “The Ultimate Field Trip,” sought to allow students to compare daily life aboard the shuttle versus on Earth. The second lesson, “Where We’ve Been, Where We’re Going, Why?” would explain the reasons for exploring space and making use of its unique environment for manufacturing certain products. The six filmed demonstrations included topics such as magnetism, Newton’s Laws, effervescence, simple machines and tools, hydroponics, and chromatographic separation, and how each of these behaves in weightlessness. Since McAuliffe could not complete these activities, many years later astronauts aboard the space station completed her mission by filming the demonstrations and preparing classroom lessons.

S. Christa McAuliffe watches the launch of space shuttle Challenger on the STS-61A Spacelab D1 mission The STS-51L crew answer reporters’ questions following the Terminal Countdown Demonstration Test (TCDT) During the TCDT, the crew practices emergency evacuation procedures
Left: At NASA’s Kennedy Space Center in Florida, Teacher in Space S. Christa McAuliffe watches the launch of space shuttle Challenger on the STS-61A Spacelab D1 mission. Middle: The STS-51L crew answer reporters’ questions following the Terminal Countdown Demonstration Test (TCDT). Right: During the TCDT, the crew practices emergency evacuation procedures.

To prepare for the upcoming launch, McAuliffe and Morgan traveled to NASA’s Kennedy Space Center (KSC) in Florida to witness the liftoff of the STS-61A Spacelab D1 mission, the last flight of space shuttle Challenger before STS-51L, on Oct. 30. The entire STS-51L crew returned to Florida for the Jan. 8, 1986, Terminal Countdown Demonstration Test (TCDT), essentially a dress rehearsal for the actual countdown to launch, planned for two weeks later. As part of the TCDT, the astronauts practiced evacuations drills from the shuttle in case of a fire or other emergency. After the test, they returned to Houston to complete last-minute training.

The STS-51L crew arrives at NASA’s Kennedy Space Center in Florida a few days before launch The STS-51L crew at the traditional prelaunch breakfast The STS-51L astronauts leave crew quarters on their way to Launch Pad 39B
Left: The STS-51L crew arrives at NASA’s Kennedy Space Center in Florida a few days before launch. Middle: The STS-51L crew at the traditional prelaunch breakfast. Right: The STS-51L astronauts leave crew quarters on their way to Launch Pad 39B.

On Jan. 23, the STS-51L crew arrived at KSC for the launch set for Jan. 26. Bad weather caused a one-day delay, and the crew suited up, rode out to the pad, and boarded Challenger. A problem closing the hatch followed by poor weather caused a scrub of the launch attempt. On Jan. 28, the crew went back out to the pad in unusually cold weather for Florida and took their places aboard Challenger. This time, the launch took place on time.

The official photograph of the STS-51L crew The STS-51L crew patch
Left: The official photograph of the STS-51L crew. Right: The STS-51L crew patch, with an apple representing S. Christa McAuliffe and the Teacher in Space project.

Following the Challenger accident, the Teacher in Space project remained active for a time as NASA reevaluated the entire Space Flight Participant Program. Morgan assumed the role of Teacher in Space designee for a few months, returning to Idaho in the fall of 1986 to resume her teaching duties, yet maintained her contact with NASA. In 1990, NASA canceled the Teacher in Space project.

Official portrait of Barbara R. Morgan Astronauts Dorothy “Dottie” M. Metcalf-Lindenburger, left, Richard “Ricky” R. Arnold, and Joseph “Joe” M. Acaba Emblem of the Year of Education on Station
Left: Official portrait of Barbara R. Morgan following her selection as a NASA astronaut in 1998. Middle: In 2004, NASA selected Educator Astronauts Dorothy “Dottie” M. Metcalf-Lindenburger, left, Richard “Ricky” R. Arnold, and Joseph “Joe” M. Acaba as members of the Group 19 astronauts. Right: Emblem of the Year of Education on Station.

In 1998, NASA invited Morgan to join the next astronaut selection group, not as a teacher but as a full-fledged mission specialist, eligible for multiple flights. That same year, NASA initiated its Educator Astronaut program, in which the agency selected qualified teachers as full-time astronauts instead of payload specialists. Morgan reported for training with the rest of the Group 17 astronauts in August 1998. In 2002, NASA assigned her to the STS-118 space station assembly mission that, following delays caused by the Columbia accident, flew in August 2007 aboard Endeavour, Challenger’s replacement. In 2004, NASA selected its first Educator Astronauts as part of Group 19Joseph “Joe” M. Acaba, Richard R. “Rickey” Arnold, and Dorothy “Dottie” M. Metcalf-Lindenburger. Metcalf-Lindenburger flew as a mission specialist aboard the STS-131 space station assembly flight in April 2010. Acaba and Arnold flew together on STS-119 in March 2009. Acaba went on to spend 125 days aboard the space station as an Expedition 31 and 32 flight engineer between May and September 2012, and another 168 days during Expedition 53 and 54 between September 2017 and February 2018. He has served as chief of the astronaut office since February 2023. Arnold made his second flight as a flight engineer during Expedition 55 and 56 from March to October 2018. Between their nearly back-to-back missions, Acaba and Arnold spent the 2017-18 school year aboard the space station for A Year of Education on Station. As a tribute to McAuliffe and her legacy, they completed her mission, filming her demonstrations and developing corresponding lessons for classrooms.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By European Space Agency
      Image: Group photo taken at the General Assembly on Defence, Space and Cybersecurity, held on Friday 12 September 2025, at ESRIN, ESA’s Centre for Earth Observation Programmes in Italy. 
      The event was organised by the European Parliament and the European Commission, in collaboration with the European Space Agency, to promote dialogue between European and national decision-makers and industry leaders. Representatives from major European entities debated the future of the European Union, which is facing unprecedented challenges since the postwar period, in an increasingly complex geopolitical context. Participants examined Europe’s needs in key sectors such as space, cybersecurity, and defence, within the broader context of the Atlantic Alliance. Acting at the European level, as demonstrated by projects like Galileo, EGNOS, and Copernicus, not only brings extraordinary added value in terms of innovation, industrial competitiveness, economies of scale, and spending efficiency, but also strengthens Europe’s strategic autonomy, the security of its citizens, and the protection of its critical infrastructure.
      The group included experts from major European entities, including: Andrius Kubilius, European Commissioner for Defence and Space; Adolfo Urso, Italian Minister of Enterprises and Made in Italy; Matteo Piantedosi, Italian Minister of the Interior; Gen. B. Luigi Vinciguerra, Brigade General of the Guardia di Finanza – Head of the III Operations Department, General Command; Josef Aschbacher, Director General of the European Space Agency; Simonetta Cheli, Director of Earth Observation Programmes and Head of ESRIN; Carlo Corazza, Head of the European Parliament Office in Italy; Ammiraglio Giuseppe Cavo Dragone, Chairman of the NATO Military Committee; Teodoro Valente, President of the Italian Space Agency (ASI); Hans de Vries, Chief Cybersecurity and Operations Officer (COO) - ENISA; Fabio di Stefano, Communications at the European Parliament in Italy.
      Watch here a replay of ESA Director General's intervention and find the transcript of his speech.
      View the full article
    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...