Jump to content

Recommended Posts

  • Publishers
Posted
Dr. Long, an African American woman with curly hair, poses for a picture while leaning over a white microscope. She wears large aviator-shaped glasses and a black and white patterned top and pants.
NASA

Dr. Irene Duhart Long was the first female and the first minority to hold the position of chief medical officer at NASA’s Kennedy Space Center in Florida, as well as the first African American female to serve in the Senior Executive Service at the center. These distinctions were only two of many firsts in her 31-year-long career at NASA.

While she broke barriers in her own life, she also advocated for others to have more opportunities. She helped create the Spaceflight and Life Sciences Training Program at Kennedy, in partnership with Florida Agricultural and Mechanical University, a program that encouraged more women and minority college students to explore careers in science. She also motivated and mentored her coworkers, taking a strong interest in their trajectory at NASA.

“One of the admirable qualities of Irene Long was her inclusion mentality regarding women in the workplace,” Kennedy Employee Assistance Counselor Patricia Bell said. “She was a front runner in advocating for women.” Long helped coordinate an educational women’s forum, focused on health, mental well-being and other topics of interest for women. Long died Aug. 4, 2020, at age 69.

For Womens Equality Day, read more about Dr. Long’s legacy at NASA.

Image Credit: NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Jan. 9, 1990, space shuttle Columbia took off on its ninth flight, STS-32, from NASA’s Kennedy Space Center (KSC) in Florida. Its five-person crew of Commander Daniel Brandenstein, Pilot James Wetherbee, and Mission Specialists Bonnie Dunbar, Marsha Ivins, and David Low flew a then record-breaking 11-day mission to deploy the Syncom IV-F5 communications satellite for the U.S. Navy and retrieve the Long-Duration Exposure Facility (LDEF). Astronauts aboard a shuttle mission in 1984 deployed the LDEF and scientists eagerly awaited the return of their 57 experiments to study the effects of nearly six years exposure to the low Earth orbit environment. The crew also conducted several middeck experiments in biotechnology and materials processing and used an echocardiograph to study changes in their hearts. 
      The STS-32 crew of Mission Specialist Bonnie Dunbar, left, Commander Daniel Brandenstein, Pilot James Wetherbee, and Mission Specialists Marsha Ivins and David Low. The STS-32 crew patch. The Long Duration Exposure Facility during its deployment on the STS-41C mission in 1984.  In November 1988, NASA announced Brandenstein, Wetherbee, Dunbar, Ivins, and Low as the STS-32 crew for the flight then planned for November 1989. Brandenstein, from the Class of 1978, had flown twice before, as pilot on STS-8 in August-September 1983 and commander of STS-51G in June 1985. Dunbar, selected in 1980, had flown once before on STS-61A in October-November 1985. For Wetherbee, Ivins, and Low, all selected in 1984, STS-32 marked their first spaceflight. During the second day of their planned 10-day mission, the astronauts would deploy the Syncom IV-F5, also known as Leasat-5, communications satellite for the U.S. Navy. The main focus of the flight involved the retrieval of LDEF, deployed by the STS-41C crew in April 1984. The original plan had LDEF, containing 57 science and technology experiments, retrieved by the STS-51D crew in February 1985. Delays in the shuttle program first pushed the retrieval to STS-61I in September 1986, and then the Challenger accident delayed it to STS-32. The facility ended up staying in orbit nearly six years instead of the originally intended 10 months. The crew rounded out the mission by conducting a series of middeck science and medical experiments. 
      Space shuttle Columbia rolls out to its launch pad on a foggy morning. NASA scientist John Charles, at rear, trains astronauts David Low, left, and Bonnie Dunbar, supine, in the operation of a cardiovascular experiment. The STS-32 crew exits crew quarters for the ride to Launch Pad 39A. Columbia returned to KSC on Aug. 21, 1989, following STS-28’s landing at Edwards Air Force Base (AFB) in California, and workers towed it to the Orbiter Processing Facility (OPF) the next day. They made 26 modifications to the orbiter, including the installation of the Remote Manipulator System (RMS), or robotic arm, and a fifth set of liquid hydrogen and liquid oxygen tanks to extend the vehicle’s duration in space. Rollover to the nearby Vehicle Assembly Building took place on Nov. 16, where Columbia joined its External Tank and twin Solid Rocket Boosters (SRB) on refurbished Mobile Launch Platform 3, last used in 1975. Rollout took place on Nov. 28 to Launch Pad 39A, newly refurbished since its previous launch in 1986.  
      On Dec. 1, engineers and the astronaut crew completed the Terminal Countdown Demonstration Test, a dress rehearsal for the planned Dec. 18 launch. Based on that date and the mission’s planned 10-day duration, the STS-32 crew would have spent Christmas in space, only the third American crew and the first space shuttle crew to do so. However, unfinished work on Pad 39A delayed the launch into January 1990. Trajectory specialists had estimated that due to orbital decay, LDEF would reenter the Earth’s atmosphere by March 1990, so a timely launch remained crucial for mission success. The countdown began on Jan. 4 for an expected Jan. 8 launch, with the crew arriving at KSC on Jan. 5. 

      Liftoff of space shuttle Columbia on STS-32. The deployment of the Syncom IV-F5 satellite. Syncom following deployment. Cloudy skies scrubbed the first launch attempt on Jan. 8. Liftoff took place the next day at 7:35 a.m. EST from Launch Pad 39A, with LDEF 1,500 miles ahead of Columbia. The powered ride to space took 8.5 minutes, placing Columbia into a 215-by-38-mile orbit. A burn of the two Orbiter Maneuvering System (OMS) engines 40 minutes later changed the orbit to the desired 222-by-180-mile altitude. The crew opened the shuttle’s payload bay doors and deployed its radiators. The major activities for the first day in space involved the checkout of the RMS and the first rendezvous maneuver in preparation for the LDEF grapple three days later. The astronauts also activated four of the middeck experiments. On the mission’s second day, Low deployed the 15,000-pound Syncom satellite, releasing it in a frisbee motion out of the payload bay. The satellite extended its antenna, stabilized itself, and 40 minutes after deployment, fired its engine for the first burn to send it to its geostationary orbit. 

      The Long Duration Exposure Facility (LDEF) during the rendezvous. STS-32 astronaut Bonnie Dunbar has grappled LDEF with the Remote Manipulator System. Dunbar lowers LDEF into the payload bay. Following the Syncom deploy, the crew turned its attention to the rendezvous with LDEF while also continuing the middeck experiments. On Flight Day 3, they completed three rendezvous burns as they steadily continued their approach to LDEF. Soon after awakening on Flight Day 4, the astronauts spotted LDEF appearing as a bright star. After the first of four rendezvous burns, Columbia’s radar locked onto the satellite. As they continued the approach, with three more burns carried out successfully, Dunbar activated the RMS in preparation for the upcoming grapple. Brandenstein took over manual control of Columbia for the final approach and parked the shuttle close enough to LDEF for Dunbar to reach out with the 50-foot arm and grapple the satellite. Brandenstein reported, “We have LDEF.”  
      For the next four hours, with Wetherbee flying the orbiter and Dunbar operating the arm, Ivins performed a comprehensive photo survey of LDEF, documenting the effects of nearly six years of space exposure on the various experiments. The survey completed, Dunbar slowly and carefully lowered LDEF into the payload bay, and five latches secured it in place for the ride back to Earth. With the two major goals of their mission completed, the astronauts settled down for the remainder of their 10-day mission conducting science experiments. 

      With astronaut David Low acting as an operator, astronaut Bonnie Dunbar serves as a subject for a cardiovascular experiment. Astronaut Marsha Ivins with several cameras testing the effects of spaceflight on different types of film. During the mission, the STS-32 crew conducted several middeck experiments. The Protein Crystal Growth experiment used vapor diffusion to grow 120 crystals of 24 different proteins, for study by scientists following their return to Earth. The Characterization of Neurospora Circadian Rhythm experiment studied whether spaceflight affected the daily cycles of pink bread mold. The Fluid Experiment Apparatus performed materials processing research in the microgravity environment. The astronauts used the American Flight Echocardiograph (AFE) to study changes in their hearts as a result of weightlessness. The crew used the large format IMAX camera to film scenes inside the cabin as well as through the windows, such as the capture of LDEF. 

      Astronaut Daniel Brandenstein holds an inflatable plastic cake given to him by his crew mates in honor of his birthday. The STS-32 crew poses in Columbia’s middeck. On Jan. 17, Brandenstein celebrated his 47th birthday, the fifth American astronaut to do so in space. His crew presented him with an inflatable plastic cake including candles while controllers in Mission Control passed on their birthday wishes as did his wife and teenage daughter. On the same day, NASA announced the selection of its 13th group of astronauts. Among them, engineer Ronald Sega, Dunbar’s husband, as well as the first female shuttle pilot, Eileen Collins, and the first Hispanic woman astronaut, Ellen Ochoa. 

      Columbia touches down at Edwards Air Force Base in California. At the welcome home ceremony at Ellington Field in Houston, director of NASA’s Johnson Space Center Aaron Cohen addresses the crowd as the STS-32 astronauts and their families listen. On Jan. 19, the astronauts awakened for their planned final day in space. However, due to fog at their landing site, Edwards AFB in California, Mission Control first informed them that they would have to spend an extra orbit in space, and finally decided to delay the landing by an entire day. With their experiments already packed, the crew spent a quiet day, looking at the Earth and using up what film still remained. As they slept that night, they passed the record for the longest space shuttle mission, set by STS-9 in 1983.  
      In preparation for reentry, the astronauts donned their orange spacesuits and closed the payload bay doors. A last-minute computer problem delayed reentry by one orbit, then Brandenstein and Wetherbee oriented Columbia into the deorbit attitude, with the OMS engines facing in the direction of travel. Over the Indian Ocean, they fired the two engines for 2 minutes 48 seconds to bring the spacecraft out of orbit. They reoriented the orbiter to fly with its heat shield exposed to the direction of flight as it encountered Earth’s atmosphere at 419,000 feet. The buildup of ionized gases caused by the heat of reentry prevented communications for about 15 minutes but provided the astronauts a great light show. After completing the Heading Alignment Circle turn, Brandenstein aligned Columbia with the runway, and Wetherbee lowered the landing gear. Columbia touched down and rolled to a stop, making the third night landing of the shuttle program and ending a 10-day 21-hour 1-minute flight, the longest shuttle flight up to that time, having completed 172 orbits of the Earth.  
      Other records set by the astronauts on this mission included Brandenstein as the new record holder for most time spent in space by a shuttle crew member – 24 days – and Dunbar accumulating the most time in space by a woman – 18 days – up to that time. Following eight hours of postflight medical testing, the astronauts boarded a jet bound for Houston’s Ellington Field, where they reunited with their families and took part in a welcome home ceremony led by Aaron Cohen, director of NASA’s Johnson Space Center. 

      Columbia returns to NASA’s Kennedy Space Center in Florida atop the Shuttle Carrier Aircraft. Workers lift the Long Duration Exposure Facility from Columbia’s payload bay. Following postlanding inspections, workers placed Columbia, with LDEF still cradled in its payload bay, atop a Shuttle Carrier Aircraft, a modified Boeing-747, and the combination left Edwards on Jan. 25. Following a refueling stop at Monthan Davis AFB in Tucson, an overnight stay at Kelly AFB in San Antonio, and another refueling stop at Eglin AFB in Fort Walton Beach, Florida, Columbia and LDEF arrived back at KSC on Jan. 26. The next day, workers towed Columbia to the OPF and on Jan. 30 lifted LDEF out of its payload bay, in preparation for the detailed study of the effects of nearly six years in space on the 57 experiments it carried. Meanwhile, workers began to prepare Columbia for its next flight, STS-35 in December 1990. 
      Enjoy the crew narrate a video of the STS-32 mission. Read Brandenstein‘s and Dunbar‘s recollections of the STS-32 mission in their oral histories with the JSC History Office. For an overview of the LDEF project, enjoy this video. For detailed information on the results of the LDEF experiments, follow this link. 

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Dragon Freedom spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbited 261 miles above Ontario, Canada, near James Bay. NASA published a new report Thursday highlighting 17 agency mechanisms that have directly and indirectly supported the development and growth of the U.S. commercial space sector for the benefit of humanity.
      The report, titled Enabling America on the Space Frontier: The Evolution of NASA’s Commercial Space Development Toolkit, is available on the agency’s website.
      “This is the most extensive and comprehensive historical analysis produced by NASA on how it has contributed to commercial space development over the decades,” said Alex MacDonald, NASA chief economist. “These efforts have given NASA regular access to space with companies, such as SpaceX and Rocket Lab, modernizing our communications infrastructure, and even led to the first private lunar lander thanks to Intuitive Machines. With commercial space growth accelerating, this report can help agency leaders and stakeholders assess the numerous mechanisms that the agency uses to support this growth, both now and in the future.”
      Throughout its history, NASA has supported the development of the commercial space sector, not only leading the way in areas such as satellite communications, launch, and remote sensing, but also developing new contract and operational models to encourage commercial participation and growth. In the last three decades, NASA has seen the results of these efforts with commercial partners able to contribute more to missions across NASA domains, and increasingly innovative agency-led efforts to engage, nurture, and integrate these capabilities. These capabilities support the agency’s mission needs, and have seen a dramatic rise in importance, according to the report.
      NASA has nurtured technology, companies, people, and ideas in the commercial space sector, contributing to the U.S. and global economies, across four distinct periods in the agency’s history:
      1915–1960: NASA’s predecessor, the National Advisory Committee on Aeronautics (NACA), and NASA’s pre-Apollo years. 1961–1980: Apollo era. 1981–2010: Space shuttle era. 2011–present: Post-shuttle commercial era. Each of these time periods are defined by dominant technologies, programs, or economic trends further detailed in the report.
      Though some of these mechanisms are relatively recent, others have been used throughout the history of NASA and NACA, leading to some overlap. The 17 mechanisms are as follows:
      Contracts and Partnership Agreements Research and Technology Development (R&TD) Dissemination of Research and Scientific Data Education and Workforce Development Workforce External Engagement and Mobility Technology Transfer Technical Support Enabling Infrastructure Launch Direct In-Space Support Standards and Regulatory Framework Support Public Engagement Industry Engagement Venture Capital Engagement Market Stimulation Funding Economic Analysis and Due Diligence Capabilities Narrative Encouragement NASA supports commercial space development in everything from spaceflight to supply chains. Small satellite capabilities have inspired a new generation of space start-ups, while new, smaller rockets, as well as new programs are just starting. Examples include CLPS (Commercial Lunar Payload Services), commercial low Earth orbit destinations, human landing systems, commercial development of NASA spacesuits, and lunar terrain vehicles. The report also details many indirect ways the agency has contributed to the vibrance of commercial space, from economic analyses to student engagement.
      The agency’s use of commercial capabilities has progressed from being the exception to the default method for many of its missions. The current post-shuttle era of NASA-supported commercial space development has seen a level of technical development comparable to the Apollo era’s Space Race. Deploying the 17 commercial space development mechanisms in the future are part of NASA’s mission to continue encouraging commercial space activities.
      To learn more about NASA’s missions, please visit:
      https//:www.nasa.gov
      Share
      Details
      Last Updated Dec 19, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      6 Min Read NASA Discovers a Long-Sought Global Electric Field on Earth
      The geographic North Pole seen from the Endurance rocket ship at 477 miles (768 kilometers) altitude above the Arctic. The faint red and green streaks at the top of the image are artifacts of lens flare. Credits: NASA Key Points
      A rocket team reports the first successful detection of Earth’s ambipolar electric field: a weak, planet-wide electric field as fundamental as Earth’s gravity and magnetic fields. First hypothesized more than 60 years ago, the ambipolar electric field is a key driver of the “polar wind,” a steady outflow of charged particles into space that occurs above Earth’s poles. This electric field lifts charged particles in our upper atmosphere to greater heights than they would otherwise reach and may have shaped our planet’s evolution in ways yet to be explored.
      Using observations from a NASA suborbital rocket, an international team of scientists has, for the first time, successfully measured a planet-wide electric field thought to be as fundamental to Earth as its gravity and magnetic fields. Known as the ambipolar electric field, scientists first hypothesized over 60 years ago that it drove how our planet’s atmosphere can escape above Earth’s North and South Poles. Measurements from the rocket, NASA’s Endurance mission, have confirmed the existence of the ambipolar field and quantified its strength, revealing its role in driving atmospheric escape and shaping our ionosphere — a layer of the upper atmosphere — more broadly.
      Understanding the complex movements and evolution of our planet’s atmosphere provides clues not only to the history of Earth but also gives us insight into the mysteries of other planets and determining which ones might be hospitable to life. The paper was published Wednesday, Aug. 28, 2024, in the journal Nature.
      Credit: NASA’s Goddard Space Flight Center/Lacey Young
      Download this video and related animations from NASA’s Scientific Visualization Studio. An Electric Field Drawing Particles Out to Space
      Since the late 1960s, spacecraft flying over Earth’s poles have detected a stream of particles flowing from our atmosphere into space. Theorists predicted this outflow, which they dubbed the “polar wind,” spurring research to understand its causes. 
      Some amount of outflow from our atmosphere was expected. Intense, unfiltered sunlight should cause some particles from our air to escape into space, like steam evaporating from a pot of water. But the observed polar wind was more mysterious. Many particles within it were cold, with no signs they had been heated — yet they were traveling at supersonic speeds.
      “Something had to be drawing these particles out of the atmosphere,” said Glyn Collinson, principal investigator of Endurance at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the paper. Scientists suspected a yet-to-be-discovered electric field could be at work.
      The hypothesized electric field, generated at the subatomic scale, was expected to be incredibly weak, with its effects felt only over hundreds of miles. For decades, detecting it was beyond the limits of existing technology. In 2016, Collinson and his team got to work inventing a new instrument they thought was up to the task of measuring Earth’s ambipolar field.
      Launching a Rocket from the Arctic
      The team’s instruments and ideas were best suited for a suborbital rocket flight launched from the Arctic. In a nod to the ship that carried Ernest Shackleton on his famous 1914 voyage to Antarctica, the team named their mission Endurance. The scientists set a course for Svalbard, a Norwegian archipelago just a few hundred miles from the North Pole and home to the northernmost rocket range in the world.
      “Svalbard is the only rocket range in the world where you can fly through the polar wind and make the measurements we needed,” said Suzie Imber, a space physicist at the University of Leicester, UK, and co-author of the paper.
      On May 11, 2022, Endurance launched and reached an altitude of 477.23 miles (768.03 kilometers), splashing down 19 minutes later in the Greenland Sea. Across the 322-mile altitude range where it collected data, Endurance measured a change in electric potential of only 0.55 volts.
      “A half a volt is almost nothing — it’s only about as strong as a watch battery,” Collinson said. “But that’s just the right amount to explain the polar wind.”
      The Endurance rocket ship launches from Ny-Ålesund, Svalbard. Credit: Andøya Space/Leif Jonny Eilertsen Hydrogen ions, the most abundant type of particle in the polar wind, experience an outward force from this field 10.6 times stronger than gravity. “That’s more than enough to counter gravity — in fact, it’s enough to launch them upwards into space at supersonic speeds,” said Alex Glocer, Endurance project scientist at NASA Goddard and co-author of the paper.
      Heavier particles also get a boost. Oxygen ions at that same altitude, immersed in this half-a-volt field, weigh half as much. In general, the team found that the ambipolar field increases what’s known as the “scale height” of the ionosphere by 271%, meaning the ionosphere remains denser to greater heights than it would be without it.
      “It’s like this conveyor belt, lifting the atmosphere up into space,” Collinson added.
      Endurance’s discovery has opened many new paths for exploration. The ambipolar field, as a fundamental energy field of our planet alongside gravity and magnetism, may have continuously shaped the evolution of our atmosphere in ways we can now begin to explore. Because it’s created by the internal dynamics of an atmosphere, similar electric fields are expected to exist on other planets, including Venus and Mars.
      “Any planet with an atmosphere should have an ambipolar field,” Collinson said. “Now that we’ve finally measured it, we can begin learning how it’s shaped our planet as well as others over time.”

      By Miles Hatfield and Rachel Lense
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Endurance was a NASA-funded mission conducted through the Sounding Rocket Program at NASA’s Wallops Flight Facility in Virginia. The Svalbard Rocket Range is owned and operated by Andøya Space. The European Incoherent Scatter Scientific Association (EISCAT) Svalbard radar, located in Longyearbyen, made ground-based measurements of the ionosphere critical to interpreting the rocket data. The United Kingdom Natural Environment Research Council (NERC) and the Research Council of Norway (RCN) funded the EISCAT radar for the Endurance mission. EISCAT is owned and operated by research institutes and research councils of Norway, Sweden, Finland, Japan, China, and the United Kingdom (the EISCAT Associates). The Endurance mission team encompasses affiliates of the Catholic University of America, Embry-Riddle Aeronautical University, the University of California, Berkeley, the University of Colorado at Boulder, the University of Leicester, U.K., the University of New Hampshire, and Penn State University.
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Ionosphere Science & Research Sounding Rockets Sounding Rockets Program View the full article
    • By NASA
      The crew of the Human Exploration Research Analog’s Campaign 7 Mission 1 clasp hands above their simulated space habitat’s elevator shaft.Credit: NASA NASA is funding 11 new studies to better understand how to best support the health and performance of crew members during long-duration spaceflight missions. The awardees will complete the studies on Earth without the need for samples and data from astronauts.
      Together, the studies will help measure physiological and psychological responses to physical and mental challenges that astronauts may encounter during spaceflight. The projects will address numerous spaceflight risks related to team performance, communication, living environment, decision-making, blood flow, and brain health. With this information, NASA will better mitigate risks and protect astronaut health and performance during future long-duration missions to the Moon, Mars, and beyond.
      The 11 finalists were selected from 123 proposals in response to the 2024 Human Exploration Research Opportunities available through the NASA Solicitation and Proposal Integrated Review and Evaluation System. Selected proposals originate from 10 institutions, and the cumulative award totals about $14.6 million. The durations of the projects range from one to five years.
      The following investigators and teams were selected:
      Katya Arquilla, University Of Colorado, Boulder, “Investigating Countermeasures for Communication Delays through the Laboratory-based Exploration Mission Analog” Tripp Driskell, Florida Maxima Corporation, “CADMUS (Crew Adaptive Decision Making Under Stress) and Crew Decision Support System: Development, Validation, and Proof-of-Concept” Christopher Jones, University of Pennsylvania, Philadelphia, “Predicting Operationally Meaningful Performance with Multivariate Biomarkers Using Advanced Algorithms” Jessica Marquez, NASA Ames Research Center, Silicon Valley, California, “Enhancing Performance and Communication for Distributed Teams During Lunar Spacewalks” Shu-Chieh Wu, San Jose State University Research Foundation, California, “Lessening the Impact of Interface Inconsistency Through Goal-Directed Crew Operations” Erika Rashka, Johns Hopkins University, Baltimore, “Local Psychiatric Digital Phenotyping for Isolated, Constrained, and Extreme (ICE) Environments via Multimodal Sensing” Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station, “Dose-response Curves of Cardiovascular and Ocular Variables During Graded Lower Body Negative Pressure in Microgravity Conditions Using Parabolic Flight” Theodora Chaspari, University Of Colorado, Boulder, “A Speech-Based Artificial Intelligence System for Predicting Team Functioning Degradation in HERA (Human Exploration Research Analog) Missions” Ute Fischer, Georgia Tech Research Corporation, Atlanta, “Supporting Collaboration and Connectedness between Space and Ground at Lunar Latencies” Xiaohong Lu, Louisiana State University, Shreveport, “Space Exposome Converges on Genotoxic Stress to Accelerate Brain Aging and Countermeasures to Mitigate Acute and Late Central Nervous System Risks” Catherine Davis, Henry M. Jackson Foundation For The Advancement of Military Medicine, North Bethesda, Maryland, “NeuroSTAR (Neurobehavioral Changes Following Stressors and Radiation): Predicting Mission Impacts from Analogous Human and Rodent Endpoints” Proposals were independently reviewed by subject matter experts in academia, industry, and government using a dual anonymous peer-review process to assess scientific merit. NASA assessed the top scoring proposals for relevance to the agency’s human research roadmap before final selections were made.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.
      Explore More
      5 min read NASA Shares Asteroid Bennu Sample in Exchange with JAXA
      Article 2 hours ago 10 min read Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA
      Article 3 hours ago 2 min read 2025 Human Lander Challenge
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      Through a nonlinear path to success, research astrophysicist Tyler Parsotan discovers transformational science using Swift’s observations. 
      Name: Tyler Parsotan
      Formal Job Classification: Research astrophysicist
      Organization: Astroparticle Physics Laboratory (Code 661), Astrophysics Science Division, Sciences and Exploration Directorate 
      Dr. Tyler Parsotan is a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. He helps operate the Bust Alert Telescope on board the Neil Gehrels Swift Observatory. Courtesy of Tyler Parsotan What do you do and what is most interesting about your role here at Goddard? 
      I help operate the Burst Alert Telescope on board the Neil Gehrels Swift Observatory to study some of the most powerful astrophysical processes in the universe. What is most interesting is the engineering capabilities that have gone into the spacecraft to make it nimble and robust, allowing it to conduct a wide range of transformative science. 
      Why did you become an astrophysicist?
      Ever since I was young, I was fascinated with the stars and how the world worked. All of this led me to physics with a focus on astrophysics. That is how I got into what I am doing now.
      What is your educational background?
      In 2015, I got a Bachelor of Science in space physics from Embry Riddle Aeronautical University in Daytona Beach, Florida. In 2019, I got a master’s in physics from Oregon State University, Corvallis, and in 2020 I got a master’s in mechanical engineering also from Oregon State University. In 2021, I got a doctorate in physics from Oregon State University. 
      When I first applied to graduate school, I did not get into any. I was fortunate enough to learn about Oregon State University though a program geared towards allowing underrepresented students in STEM fields to get graduate degrees. This program, known as the Ronald E. McNair Post-baccalaureate Achievement Program, played a pivotal role in me being able to attend graduate school . 
      Are you also a pilot?
      Yes, I am. While I was in Oregon as a graduate student, I was able to save up enough money to get my private pilot’s license over the course of one summer from the local Corvallis airport. I would bike to the airport and get in a plane to fly all over Oregon from the coast to the Cascade Mountains. It was a very cool experience. 
      How did you come to Goddard?
      I did a post-doctorate fellowship starting the fall of 2021 through May 2023. My doctoral research was related to one of Swift’s many science focuses, so I wanted to continue my work at Goddard. 
      What transformational science have you been involved with using Swift’s observations?
      Some of the science that Swift focuses on is related to the transient universe, meaning that we primarily look at astrophysical events that come and go very quickly and typically produce a ton of energy. Swift examines the light energy produced from black holes, the majority of which are eating mass from black stars. 
      While at Oregon State University, I studied the most energetic events in the universe known as gamma-ray bursts. I am now studying gamma-ray bursts at Goddard. One of the big discoveries made by Swift is that these gamma ray bursts can be seen out to early times in the universe. Some of these explosions occurred when the universe was very young, only 100,000 years old or so. Because the universe is expanding, it takes that light some time to travel to us. With Swift, we detect that light and can make some measurements about the gamma-ray bursts, such as when they occurred, how much energy they produced in these massive explosions, and some of the properties of the early universe. 
      “There are no linear paths to success,” said Tyler. “Keep looking for a way to be successful. This advice applies to life overall.”Courtesy of Tyler Parsotan What is the biggest discovery you have been involved with and what do you love most about working on Swift?
      We are simulating the gamma-ray bursts, which was a focus of my doctorate. We cannot yet actually see these explosions, so we have to simulate them using the physics that we now know. I have been able to connect some of the large simulations to the Swift observations and measurements. This helps us better understand the underlying physics of these powerful explosions. 
      The amount of energy produced in a typical gamma-ray burst is enough to blow up the Sun a few times over.
      Lots of people know about Hubble, which observes the light that we can see with our eyes. The light that I deal with, gamma rays, has much higher energy and cannot be seen with our eyes. We have to use different techniques to measure this light. Designing detectors to measure this light is challenging technically but means that this area of physics is ripe for discovery. I love being part of this. 
      Swift will be 20 years old in November 2024. As a relative newcomer to Swift, what are your thoughts?
      I think Swift is a great observatory because it has conducted lots of transformational science, drastically expanding our knowledge of the cosmos. Even though it is getting older, it is still able to push science forward in new and exciting ways. I am looking forward to helping the Swift mission celebrate 20 years of amazing science. 
      What is your advice to anyone starting and continuing a career?
      There are no linear paths to success. Keep looking for a way to be successful. This advice applies to life overall. 
      Are you involved in any of Goddard’s extracurricular activities?
      I recently joined Goddard’s soccer league. Everyone at Goddard self organizes into teams that play each other after work during the week. We play about a game a week. The winning team gets bragging rights. I mostly play defense. Being on a team is a good way to meet people at Goddard and to stay active. 
      In addition to soccer, what are your hobbies?
      I enjoy hiking, mountain biking, and generally being outdoors. 
      Where do you see yourself in five years?
      I hope to still be at Goddard. I enjoy the type of work and the overall work environment. If Swift continues another five years, hopefully I’ll be working on it and also helping to create the next generation of gamma-ray observatories to help push science forward. We are making the science that will be in the next textbooks. 
      Who do you want to thank?
      My doctoral supervisor Davide Lazzati was an extremely supportive mentor and pushed me to be the best scientist that I can be. Since I arrived at Goddard, we have been good colleagues. 
      My former mentor and supervisor at Goddard is Brad Cenko, the Swift principal investigator. I am grateful that he hired me and allowed me to grow as a post-doctoral researcher.
      I also want to thank my entire family for being extremely supportive and understanding even though they may not fully understand what I really do. 
      Who is your science hero?
      Copernicus. He put forward the theory that our solar system orbits the Sun. He was obviously very instrumental in changing the way we think about the cosmos. He got into a lot of trouble with his theory, which makes his accomplishments all the more important. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Aug 20, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center Neil Gehrels Swift Observatory People of NASA Explore More
      7 min read Bindu Rani Explores Black Holes, Mothers Hard, Balances Life
      Article 2 weeks ago 4 min read Regina Caputo Charts the Future of High-Energy Astrophysics
      Article 2 weeks ago 6 min read Rebekah Hounsell: Tracking Cosmic Light to Untangle the Universe’s Darkest Mysteries
      Article 1 month ago View the full article
  • Check out these Videos

×
×
  • Create New...