Jump to content

NASA’s Boeing Crew Flight Test Status News Conference


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      test
      Downloads


      View All

      NESC Pilot Breathing Assessment Data
      Jan 7, 2025
      MP4 ()


      View the full article
    • By USH
      The crew of a Surjet private air service flight had an unusual encounter on December 23 while returning to Fort Lauderdale. Flight attendant Cassandra Martin, along with two pilots, was onboard the aircraft flying over the Bahamas when an unexpected event caught their attention.

      “I suddenly heard air traffic control say, ‘We have a foreign object; can you please identify it?'” Martin recounted to NBC Miami. 
      Curious, she looked out the window. “I glanced to the left, and the pilot noticed three objects, though I only saw one. I quickly grabbed my phone, pressed it against the window, and tried to record a video of the object,” she explained. 
      Martin described the orb as white, later shifting to a faint green hue, almost as though surrounded by an electric field. The object followed their flight for about 45 minutes before disappearing. 

      What made the sighting extraordinary was the altitude. The jet was cruising at approximately 43,000 to 45,000 feet, yet the orb was far above the aircraft and still managed to track it for the extended duration. 
      The orb’s speed and maneuverability ruled out possibilities such as a balloon or a consumer drone. Unless the orb is of extraterrestrial origin, the orb might be a craft or drone equipped with highly advanced technology not yet publicly known, akin to recent reports of sophisticated drones spotted across the U.S. 
      This remarkable incident follows a December 16, 2024 sighting aboard United Airlines flight UA2359 from Chicago to Newark. During that flight, a passenger filmed several unidentified orbs at altitudes between 40,000 and 50,000 feet. Additionally, reports surfaced from at least four commercial airline pilots who witnessed mysterious, colorful, circular lights moving at extreme speeds over Oregon in the same month. 
      These repeated sightings raise questions: Are they advanced black projects hidden from public knowledge or evidence of something extraterrestrial? Regardless of their origin, the increasing reports of advanced drones and strange orbs suggest that something significant is occurring. View the full article
    • By NASA
      Measurements from space support wildfire risk predictions

      Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.

      As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
      This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data

      Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.

      Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space

      Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.

      Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
      View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
    • By NASA
      Learn Home First NASA Neurodiversity… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference
      The NASA Science Activation Program’s NASA’s Neurodiversity Network (N3) project sponsors a summer internship program for high school students, in which learners on the autism spectrum are matched with NASA Subject Matter Experts. N3 intern Lillian Hall and mentor Dr. Juan Carlos Martinez Oliveros presented Lilly’s summer research project on December 9 at the 2024 American Geophysical Union conference in Washington, D.C. Their poster, entitled “Eclipse Megamovie: Image Processing”, represents the first time an N3 intern has co-authored a presentation at the prestigious AGU conference.
      The NASA Citizen Science project, Eclipse Megamovie, is leveraging the power of citizen science to construct a high-resolution time-lapse of the Sun’s corona during the April 8, 2024 total solar eclipse. By coordinating the work of hundreds of participants along the path of totality, a substantial dataset of images was obtained. The goal of the project is to unveil dynamic transformations in the Sun’s atmosphere that are only visible during a total solar eclipse.
      To process the vast quantity of imaging data collected, Lilly assisted Dr. Martinez Oliveros and other researchers in implementing a robust pipeline involving image calibration, registration, and co-location. Image registration techniques aligned the solar features across different frames, compensating for Earth’s rotation and camera movement. Finally, they used imaging techniques to enhance the signal-to-noise ratio, revealing subtle coronal structures and possible dynamics. This comprehensive data processing methodology has enabled the extraction of meaningful scientific information from the Eclipse Megamovie dataset.
      Here’s what Lilly had to say: “Working with N3 has given me a chance to use my neurodiverse perspective to make an impact on NASA research. Through the processes of my project and the opportunity to share it at the American Geophysical Union conference, I am so grateful to have found my spot in the planetary science field I dream to continue researching in the future.”
      Learn more about NASA Citizen Science and how you can participate (participation does not require citizenship in any particular country): https://science.nasa.gov/citizen-science/
      The N3 project is supported by NASA under cooperative agreement award number 80NSSC21M0004 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.agu.org/annual-meeting/schedule
      Lilly Hall with her Eclipse Megamovie Image Processing poster. Kristen Hall Share








      Details
      Last Updated Jan 10, 2025 Editor NASA Science Editorial Team Related Terms
      Citizen Science Heliophysics Planetary Geosciences & Geophysics Science Activation Explore More
      2 min read NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


      Article


      3 days ago
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere


      Article


      1 week ago
      2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
  • Check out these Videos

×
×
  • Create New...