Jump to content

NASA Astronauts Wilmore, Williams’ Space Station Science Highlights


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Since the start of International Space Station operations more than two decades ago, crews have lived and worked in microgravity to conduct an array of research that benefits life on Earth and future space exploration missions, and perform operational tasks to keep the state-of-the-art scientific lab in its highest-operating condition.

The space station has seen the arrival of more than 270 people. The latest visitors include NASA astronauts Butch Wilmore and Suni Williams, who arrived on June 6 as part of the agency’s Boeing Crew Flight Test.

Both veterans of two previous spaceflights, Wilmore and Williams quickly immersed themselves in station life, living and working in low Earth orbit alongside the Expedition 71 crew. The pair has completed a host of science and operational tasks, including fluid physics research, plant facility maintenance, robotic operations, Earth observations, and more.

Check out some highlights from Wilmore and Williams’ mission below.

(From left) NASA astronauts Suni Williams and Butch Wilmore perform maintenance work on the Plant Water Management (PWM) system. The duo is investigating how fluid physics, such as surface tension, hydroponics, or air circulation, could overcome the lack of gravity when watering and nourishing plants grown in space. The PWM, located in the station’s Harmony module, uses facilities to promote space agricultural activities on spacecraft and space habitat.
(From left) NASA astronauts Suni Williams and Butch Wilmore perform maintenance work on the Plant Water Management (PWM) system. The duo is investigating how fluid physics, such as surface tension, hydroponics, or air circulation, could overcome the lack of gravity when watering and nourishing plants grown in space. The PWM, located in the station’s Harmony module, uses facilities to promote space agricultural activities on spacecraft and space habitat.
NASA

Providing adequate water and nutrition to plants grown in space is critical as missions expand in low Earth orbit and beyond to the Moon and eventually Mars.

Throughout their stay aboard the orbiting laboratory, Wilmore and Williams have tested how different techniques could benefit crop growth in space through the Plant Water Management investigation.

This investigation uses the physical properties of fluids—surface tension, wetting, and system geometry—to overcome the lack of gravity and provide hydration to plants, which could advance the development of hydroponic systems for use during future space travel.

NASA astronaut and Boeing's Crew Flight Test Commander Butch Wilmore installs a light meter inside the Veggie space botany facility to obtain light measurements and adjust the light settings inside the plant research device. Veggie is located aboard the International Space Station's Columbus laboratory module and has grown lettuce, tomatoes, zinnias, and more aboard the orbital outpost.
NASA astronaut Butch Wilmore is pictured installing a light meter inside the Veggie facility to obtain light measurements and adjust the light settings inside the plant research device.
NASA

Another investigation taking a deeper look at growing plants in space is the Vegetable Production System, or Veggie. Crews living aboard the space station have used Veggie to grow fresh produce and even flowers, providing astronauts with nutritious fresh foods, boosting morale, and enhancing well-being.

In preparation for upcoming work with Veggie, Wilmore installed a light meter inside the facility, which will help crew members obtain light measurements and adjust light settings in the future when they practice their green thumb in space.

NASA astronaut and Boeing Crew Flight Test Pilot Suni Williams Suni Williams uses a HAM radio and talks to students from Banda Aceh, Indonesia, answering their questions about life in space and other space related subjects aboard the International Space Station.
NASA astronaut Suni Williams speaks into the microphone during a HAM Radio session with students from Banda Aceh, Indonesia.
NASA

For more than two decades, astronauts aboard the space station have connected with students and hobbyists worldwide, sharing details about living and working in microgravity.

In early August, Williams used the Ham Radio to connect with students from Banda Aceh, Indonesia, and answer questions about station research as the orbiting lab passed overhead.  

These space-to-Earth calls inspire younger generations to pursue interests and careers in STEM and provide school communities with opportunities to learn about space technology and communications.

NASA astronaut and Boeing's Crew Flight Test Pilot Suni Williams observes a pair of Astrobee robotic free-flying assistants demonstrating autonomous docking maneuvers inside the International Space Station's Kibo laboratory module. Williams was inside Kibo's logistics module which serves as a storage area that houses materials for experiments, maintenance tools, and crew supplies.
NASA astronaut Suni Williams observes a pair of Astrobee free-flying robots as they demonstrate autonomous docking maneuvers inside the Kibo Laboratory Module.
NASA

Astrobee, a set of three free-flying robots, are often buzzing around the orbiting lab, demonstrating how technology could assist astronauts with various tasks such as routine chores and maintenance.

Throughout the mission, Williams powered up and observed Astrobee operations as ground controllers remotely mapped the interior of the orbiting lab, practiced docking maneuvers, and tested how the robots carry out various tasks.

(From top left) The Strait of Gibraltar separating Spain and Morocco, captured by NASA astronaut Butch Wilmore; Boeing’s Starliner spacecraft is seen docked to the Harmony module’s forward port. This long-duration, night time photo, shows light trails of civilization over the coast of Mumbai, India; Two Patagonian Lakes, Viedma and Argentino, are pictured as the station orbited 272 miles above; Wilmore is photographed inside the cupola while taking pictures of Earth.
(From top left) The Strait of Gibraltar separating Spain and Morocco, captured by NASA astronaut Butch Wilmore; Boeing’s Starliner spacecraft is seen docked to the Harmony module’s forward port. This long-duration, nighttime photo, shows light trails of civilization over the coast of Mumbai, India; (From bottom left) Two Patagonian Lakes, Viedma and Argentino, are pictured as the station orbited 272 miles above; Wilmore is photographed inside the cupola while taking pictures of Earth.
NASA

Since the early days of human spaceflight, astronauts have been photographing Earth from space, capturing the wonder and environmental condition of our home planet.

Orbiting 250 miles above, crew members often spend their free time shooting photos from the cupola, or “window to the world.” The space station’s unique vantage point provides a glimpse at how Earth has changed over time and gives scientists a better look at key data from the perspective of the orbital complex while also improving crews’ mental well-being.

During their mission, the astronaut duo has captured hundreds of photographs of Earth, ranging from auroras, land, sea, orbital sunrises and sunsets, and more.

Wilmore and Williams continue to support daily space station operations as NASA and Boeing evaluate possible return options. For the latest updates on NASA’s commercial crew activities, including the Boeing Crew Flight Test, visit the Commercial Crew Program blog.

For daily space station updates and to learn more about the research being conducted in microgravity, visit the space station blog.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      At this week's annual Air, Space and Cyber Conference, the command responsible for training and readiness in the Space Force emphasized Guardian development, connection and family readiness across three key panel discussions.

      View the full article
    • By NASA
      3 min read
      NASA Develops Process to Create Very Accurate Eclipse Maps
      New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface.
      For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations.
      Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude.
      The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain.
      “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow  — the umbra,” said Wright.
      A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.”
      The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality.
      A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface.
      A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach.
      Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images.
      This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago.
      For more about eclipses, refer to:
      https://science.nasa.gov/eclipses
      By Ernie Wright and Susannah Darling
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Nancy Neal-Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-0039
      nancy.n.jones@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night


      Article


      3 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      4 weeks ago
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of…


      Article


      4 weeks ago
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station.
      The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.
      Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.
      Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster  for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
      The Crew
      Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft.
      Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment.
      Follow @astrohague on X and Instagram.
      Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station.
      Mission Overview
      After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station.
      Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary.
      After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida.
      Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission.
      While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91.
      In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore.
      Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at https://www.nasa.gov/station.
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Commercial Crew International Space Station (ISS) Explore More
      4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 day ago 3 min read Station Science Top News: September 13, 2024
      Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During Aviation Day at NASA’s Glenn Research Center, researcher Will Banks, right, assists a student with the installation of his test article into a demonstration wind tunnel to gain a drag force measurement. Credit: NASA/Sara Lowthian-Hanna  For students considering careers in STEM, the field of aviation offers diverse and abundant opportunities they may never have realized.  
      During Aviation Day on Aug. 27, NASA Glenn Research Center’s Office of STEM Engagement welcomed middle and high school students to the research center in Cleveland. The one-day event enabled students to learn more about the field of aviation and advancements in technology related to the aviation industry.  
      Test engineer Cecila Otero, left, explains factors to consider when testing inside the 1×1 Supersonic Wind Tunnel facility at NASA’s Glenn Research Center.  Credit: NASA/Sara Lowthian-Hanna  An aerodynamic drag challenge, virtual reality cockpit, and tours of icing and wind tunnel facilities were among the activities that connected students with NASA scientists and engineers working in aeronautics.  


      Return to Newsletter Explore More
      1 min read Ohio State Fairgoers Learn About NASA Technologies
      Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan
      Article 4 mins ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn Research Center’s Chris Hartenstine explains the differences in tires designed for Moon and Mars terrains and testing performed at NASA Glenn. Credit: NASA/Jan Wittry  NASA Glenn Research Center’s Office of STEM Engagement (OSTEM) and Office of Communications staff traveled to the Ohio State Fair in Columbus, Ohio, this summer.  
      OSTEM participated in a ribbon-cutting ceremony to open the fair with Ohio Gov. Mike DeWine. Both teams hosted tables to share information about the key roles NASA Glenn plays in developing technologies for future missions to the lunar surface through hands-on activities. A focus on NASA Glenn’s Simulated Lunar Operations Lab (SLOPE) included sample rover wheels, shape memory alloys, and a virtual 360 tour of the SLOPE facility.  
      NASA Glenn Research Center’s Jan Wittry talks with fair visitors as they watch a virtual tour of NASA Glenn’s Simulated Lunar Operations Laboratory. Credit: NASA/Chris Hartenstine 
      Return to Newsletter Explore More
      1 min read Students Soar at NASA Glenn’s Aviation Day
      Article 3 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field
      Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan
      Article 4 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...