Jump to content

Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA


Recommended Posts

  • Publishers
Posted

9 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Read the article in English here.

Los astronautas de la NASA Butch Wilmore y Suni Williams llegaron al laboratorio orbital el 6 de junio a bordo de la nave Boeing Starliner tras despegar el 5 de junio del Complejo de Lanzamiento Espacial-41 de la Estación Espacial de Cabo Cañaveral, en Florida.

Durante el vuelo de Starliner a la estación espacial, los ingenieros observaron que algunos de los propulsores de la nave no funcionaban como se esperaba y también se observaron varias fugas en el sistema de helio de Starliner. Desde entonces, los equipos de ingeniería de la NASA y Boeing han llevado a cabo varias pruebas de los propulsores, así como revisiones exhaustivas de los datos para comprender mejor la nave espacial. Mientras los ingenieros se esfuerzan por resolver los problemas técnicos antes del regreso del Starliner a la Tierra, el dúo de astronautas ha estado trabajando con la tripulación de la Expedición 71, realizando investigaciones científicas y actividades de mantenimiento.

La NASA tiene previsto llevar a cabo dos revisiones: una del junta de control del programa y una revisión del estado de preparación para el vuelo de la agencia, antes de decidir cómo regresará de manera segura a Wilmore y Williams de la. La NASA espera tomar una decisión sobre el curso a seguir a finales de agosto.

He aquí algunas preguntas frecuentes sobre su misión.

Boeing's Starliner spacecraft that launched NASA's Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module's forward port. This view is from a window on the SpaceX Dragon Endeavour spacecraft docked to the port adjacent to the Starliner.

Sobre la misión y su retraso

¿Qué es la prueba de vuelo tripulado Boeing de la NASA?

La la prueba de vuelo tripulado Boeing de la NASA despegó el 5 de junio y es el primer vuelo con astronautas de la nave Starliner a la Estación Espacial Internacional. La prueba de vuelo tiene como objetivo demostrar que el sistema está preparado para misiones de rotación a la estación espacial. La NASA quiere que, además de las naves Soyuz de Roscosmos, haya dos naves estadounidenses capaces de transportar astronautas para garantizar una tripulación permanente a bordo del complejo orbital.

¿Cuáles son los objetivos de la prueba de vuelo tripulado?

Esta prueba de vuelo tiene por objeto demostrar la aptitud del Starliner para ejecutar una misión de rotación de seis meses a la estación espacial. Los objetivos de la prueba de vuelo se desarrollaron para respaldar el proceso de certificación de la NASA y recopilar los datos de rendimiento necesarios para evaluar la preparación antes de los vuelos de larga duración.

¿Por qué la prueba de vuelo tripulado permanecerá más tiempo del previsto a bordo de la estación espacial?

Durante el vuelo de Starliner a la estación espacial, algunos de los propulsores de la nave no funcionaron como se esperaba y se observaron varias fugas en el sistema de helio de Starliner. Aunque la duración inicial de la misión estaba prevista en torno a una semana, no hay prisa por traer de vuelta a casa a la tripulación, por lo que la NASA y Boeing se están tomando un tiempo extra para aprender sobre la nave espacial. Se trata de una lección aprendida del accidente del transbordador espacial Columbia. Nuestros equipos de la NASA y Boeing están estudiando minuciosamente los datos de las pruebas y análisis adicionales en el espacio y en tierra, proporcionando a los gestores de la misión datos para tomar la mejor y más segura decisión sobre cómo y cuándo traer de vuelta a casa a la tripulación.

Si se diera una emergencia en la estación espacial, ¿cómo volverían Butch y Suni a casa?

El Starliner sigue siendo la principal opción para Butch y Suni si se produjera una emergencia y tuvieran que abandonar rápidamente la estación. No existe una necesidad urgente de traerlos a casa, y la NASA está utilizando el tiempo extra para comprender los problemas técnicos de la nave espacial antes de decidir un plan de regreso.

¿Cuánto tiempo podrían permanecer Butch y Suni en la estación espacial si no regresan a bordo de Starliner?

Si la NASA decidiera devolver la nave Starliner sin tripulación, Butch y Suni permanecerían a bordo de la estación hasta finales de febrero de 2025. La NASA replanificaría la misión SpaceX Crew-9, enviando solo dos tripulantes en lugar de cuatro a finales de septiembre. Butch y Suni regresarían a la Tierra tras el incremento programado para Crew-9 a principios del próximo año.

¿Se quedarán Butch y Suni en el espacio hasta 2025?

No se ha tomado ninguna decisión. La NASA sigue evaluando todas las opciones a medida que aprende más sobre el sistema de propulsión de Starliner. Butch y Suni podrían regresar a bordo de Starliner, o podrían volver como parte de la misión SpaceX Crew-9 de la agencia a principios del año que viene.

¿Puede Starliner volar sin astronautas?

Sí, Starliner puede desacoplarse y abandonar la órbita de forma autónoma, si la NASA decide que la nave regrese sin tripulación.

¿Podría la NASA enviar una nave SpaceX Dragon para traer de vuelta a Butch y Suni?

If NASA decides to return them aboard a SpaceX Dragon, NASA will replan its SpaceX Crew-9 mission by launching only two crew members in late September instead of four. Butch and Suni would then return to Earth after the regularly scheduled Crew-9 increment early next year.

¿Por qué necesita la NASA dos sistemas de transporte de tripulación?

The main goal of the agency’s Commercial Crew Program is two, unique human spaceflight systems. Should any one system encounter an issue, NASA still has the capability to launch and return crew to ensure safety and a continuous human presence aboard the International Space Station.

NASA's Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore (at center) pose with Expedition 71 Flight Engineers (far left) Mike Barratt and Tracy C. Dyson (far right), both NASA astronauts, in their spacesuits aboard the International Space Station's Quest airlock.

Sobre los astronautas

¿Están Butch y Suni atrapados en la estación espacial?

No, Butch y Suni están a salvo a bordo de la estación espacial, trabajando junto a la tripulación de la Expedición 71. También han participado activamente en las pruebas y reuniones técnicas del Starliner. Butch y Suni podrían volver a casa a bordo de la nave Starliner en caso de emergencia. La agencia también dispone de otras opciones de regreso, en caso necesario, tanto para la planificación de contingencias como para el regreso en condiciones normales.

¿Están preparados Suni y Butch para una estancia más larga en la estación?

Butch y Suni ya han realizado dos estancias de larga duración a bordo de la estación. Los astronautas de la NASA se embarcan en misiones plenamente conscientes de los diversos escenarios que podrían materializarse. Esta misión no es diferente, y entendían las posibilidades e incógnitas de este vuelo de prueba, incluyendo la posibilidad de permanecer a bordo de la estación más tiempo del previsto.

¿Cuánto duraría una estancia prolongada de Butch y Suni en comparación con la duración de otras misiones en la estación espacial?

Una estancia típica a bordo de la Estación Espacial Internacional es de unos seis meses, y algunos astronautas de la NASA han permanecido en la estación espacial durante misiones de mayor duración. Las misiones anteriores han proporcionado a la NASA gran cantidad de datos sobre los vuelos espaciales de larga duración y sus efectos en el cuerpo humano, que la agencia aplica a cualquier misión con tripulación.

¿Tienen los astronautas todo lo que necesitan (por ejemplo, comida, ropa, oxígeno, artículos personales, etc.)?

Sí. La Estación Espacial Internacional está bien provista de todo lo que necesita la tripulación, incluidos alimentos, agua, ropa y oxígeno. Además, la NASA y sus socios de la estación espacial lanzan con frecuencia misiones de reabastecimiento al complejo orbital con suministros y carga adicionales.

Recientemente, llegaron a la estación una nave espacial Cygnus de Northrop Grumman que transportaba 3.720 kilogramos (8.200 libras) de alimentos, combustible, suministros y material científico, y una nave espacial de reabastecimiento Progress que transportaba 2.721 kilogramos (6.000 libras) de carga. La NASA tiene previstas misiones adicionales de SpaceX de reabastecimiento durante lo que queda de 2024.

¿Qué están haciendo a bordo de la estación espacial?

La tripulación sigue supervisando los sistemas de vuelo del Starliner y recopilando datos de rendimiento para la certificación de sistemas. La NASA también está aprovechando el tiempo extra de Butch y Suni a bordo del laboratorio orbital, donde han completado varios experimentos científicos, tareas de mantenimiento y han colaborado en los preparativos de las caminatas espaciales. Algunos de los experimentos científicos que han llevado a cabo recientemente incluyen nuevas formas de producir cables de fibra óptica y el cultivo de plantas a bordo del complejo orbital.

¿Pueden hablar con sus familiares y amigos?

Butch y Suni disfrutan de muchas de las comodidades que tenemos aquí en la Tierra. Pueden enviar correos electrónicos, llamar por teléfono y hacer videoconferencias con sus familiares y amigos cuando tienen tiempo libre a bordo de la Estación Espacial Internacional.

iss071e217183 (June 25, 2024) -- As the International Space Station orbited 263 miles above Earth, NASA astronaut Butch Wilmore captured this image of Spain and Morocco. The Strait of Gibraltar separates the two countries and connects the Atlantic Ocean to the Mediterranean Sea.

Sobre el plan de regreso

¿Cuáles son las otras opciones para traer de vuelta a Butch y Suni?

La NASA dispone de dos sistemas estadounidenses de transporte espacial capaces de transportar tripulación a la estación y de vuelta. Aunque no se ha tomado ninguna decisión, la NASA está considerando varias opciones para hacer regresar a Butch y Suni de la estación espacial, incluido su retorno a bordo de la nave Starliner, si se autoriza, o como parte de la misión SpaceX Crew-9 de la agencia en febrero de 2025.

¿Es más seguro traerlos a casa a bordo de una nave Dragon de SpaceX?

Los vuelos de prueba tripulados son intrínsecamente arriesgados y, aunque las misiones de rotación puedan parecer rutinarias, tampoco están exentas de riesgos. Es competencia de la NASA evaluar ese riesgo antes de cada vuelo y determinar si es aceptable para la tripulación.

¿Qué otras medidas está tomando la NASA para traerlos a casa?

La NASA ajustó el lanzamiento de la Tripulación-9 de SpaceX y el regreso de la Tripulación-8 de la agencia, lo que permite más tiempo para finalizar los planes de regreso de Starliner. La NASA también está examinando las asignaciones de tripulación para garantizar que Butch y Suni puedan regresar con Crew-9 si fuera necesario.

Para consultar el blog de la NASA y obtener más información sobre la misión (en inglés), visita: https://www.nasa.gov/commercialcrew

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read From Supercomputers to Wind Tunnels: NASA’s Road to Artemis II
      Of the many roads leading to successful Artemis missions, one is paved with high-tech computing chips called superchips. Along the way, a partnership between NASA wind tunnel engineers, data visualization scientists, and software developers verified a quick, cost-effective solution to improve NASA’s SLS (Space Launch System) rocket for the upcoming Artemis II mission. This will be the first crewed flight of the SLS rocket and Orion spacecraft, on an approximately 10-day journey around the Moon.  
      A high-speed network connection between high-end computing resources at the NASA Advanced Supercomputing facility and the Unitary Plan Wind Tunnel, both located at NASA’s Ames Research Center in California’s Silicon Valley, is enabling a collaboration to improve the rocket for the Artemis II mission. During the Artemis I test flight, the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attach points, caused by unsteady airflow between the gap.
      One solution proposed for Artemis II was adding four strakes. A strake is a thin, fin-like structure commonly used on aircraft to improve unsteady airflow and stability. Adding them to the core stage minimizes the vibration of components.
      The strake solution comes from previous tests in the Unitary Plan Wind Tunnel, where NASA engineers applied an Unsteady Pressure Sensitive Paint (uPSP) technique to SLS models. The paint measures changes over time in aerodynamic pressures on air and spacecraft.
      This supercomputer simulation peers down at a close-up of the SLS rocket during ascent. The force of friction is represented in greens, yellows, and blues. A six-foot-long strake flanking each booster’s forward connection point on the SLS intertank smooths vibrations induced by airflow, represented by purples, yellows, and reds. The white streams represent a contour plot of density magnitude, highlighting the change of density in the air.
      Credit: NASA/NAS/Gerrit-Daniel Stich, Michael Barad, Timothy Sandstrom, Derek Dalle It is sprayed onto test models, and high-speed cameras capture video of the fluctuating brightness of the paint, which corresponds to the local pressure fluctuations on the model. Capturing rapid changes in pressure across large areas of the SLS model helps engineers understand the fast-changing environment. The data is streamed to the NASA Advanced Supercomputing facility via a high-speed network connection.
      “This technique lets us see wind tunnel data in much finer detail than ever before. With that extra clarity, engineers can create more accurate models of how rockets and spacecraft respond to stress, helping design stronger, safer, and more efficient structures,” said Thomas Steva, lead engineer, SLS sub-division in the Aerodynamics Branch at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      For the SLS configuration with the strakes, the wind tunnel team applied the paint to a scale model of the rocket. Once the camera data streamed to the supercomputing facility, a team of visualization and data analysis experts displayed the results on the hyperwall visualization system, giving the SLS team an unprecedented look at the effect of the strakes on the vehicle’s performance. Teams were able to interact with and analyze the paint data.
      NASA’s high-end computing capability and facilities, paired with unique facilities at Ames, give us the ability to increase productivity by shortening timelines, reducing costs, and strengthening designs in ways that directly support safe human spaceflight.
      Kevin Murphy
      NASA's Chief Science Data Officer
      “NASA’s high-end computing capability and facilities, paired with unique facilities at Ames, give us the ability to increase productivity by shortening timelines, reducing costs, and strengthening designs in ways that directly support safe human spaceflight,” said Kevin Murphy, NASA’s chief science data officer and lead for the agency’s High-End Computing Capability portfolio at NASA Headquarters in Washington. “We’re actively using this capability to help ensure Artemis II is ready for launch.”
      Leveraging the high-speed connection between the Unitary Plan Wind Tunnel and NASA Advanced Supercomputing facility reduces the typical data processing time from weeks to just hours.
      For years, the NASA Advancing Supercomputing Division’s in-house Launch, Ascent, and Vehicle Aerodynamics software has helped play a role in designing and certifying the various SLS vehicle configurations.
      “Being able to work with the hyperwall and the visualization team allows for in-person, rapid engagement with data, and we can make near-real-time tweaks to the processing,” said Lara Lash, an aerospace engineering researcher in the Experimental Aero-Physics Branch at NASA Ames who leads the uPSP work.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows two simulations of the SLS (Space Launch System) rocket using NASA’s Launch Ascent and Vehicle Aerodynamics solver. For the Artemis II test flight, a pair of six-foot-long strakes will be added to the core stage of SLS that will smooth vibrations induced by airflow during ascent. The top simulation is without strakes while the bottom shows the airflow with strakes. The green and yellow colors on the rocket’s surface show how the airflow scrapes against the rocket’s skin. The white and gray areas show changes in air density between the boosters and core stage, with the brightest regions marking shock waves. The strakes reduce vibrations and improves the safety of the integrated vehicle. NASA/NAS/Gerrit-Daniel Stich, Michael Barad, Timothy Sandstrom, Derek Dalle This time, NASA Advanced Supercomputing researchers used the Cabeus supercomputer, which is the agency’s largest GPU-based computing cluster containing 350 NVIDIA superchip nodes. The supercomputer produced a series of complex computational fluid dynamic simulations that helped explain the underlying physics of the strake addition and filled in gaps between areas where the wind tunnel cameras and sensors couldn’t reach.
      This truly was a joint effort across multiple teams.
      “The beauty of the strake solution is that we were able to add strakes to improve unsteady aerodynamics, and associated vibration levels of components in the intertank,” said Kristin Morgan, who manages the strake implementation effort for the SLS at Marshall.
      A team from Boeing is currently installing the strakes on the rocket at NASA’s Kennedy Space Center in Florida and are targeting October 2025 to complete installation.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      To learn more about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 18, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Ames Research Center Artemis Artemis 2 Marshall Space Flight Center Explore More
      6 min read NASA’s Chandra Finds Black Hole With Tremendous Growth
      Article 3 hours ago 2 min read Building a Lunar Network: Johnson Tests Wireless Technologies for the Moon 
      Article 4 hours ago 4 min read NASA Artemis II Moon Rocket Ready to Fly Crew
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In this infrared photograph, the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, beams its eight-laser beacon to the Deep Space Optical Communications flight laser transceiver aboard NASA’s Psyche spacecraft.NASA/JPL-Caltech The project has exceeded all of its technical goals after two years, setting up the foundations of high-speed communications for NASA’s future human missions to Mars.
      NASA’s Deep Space Optical Communications technology successfully showed that data encoded in lasers could be reliably transmitted, received, and decoded after traveling millions of miles from Earth at distances comparable to Mars. Nearly two years after launching aboard the agency’s Psyche mission in 2023, the technology demonstration recently completed its 65th and final pass, sending a laser signal to Psyche and receiving the return signal, from 218 million miles away. 
      “NASA is setting America on the path to Mars, and advancing laser communications technologies brings us one step closer to streaming high-definition video and delivering valuable data from the Martian surface faster than ever before,” said acting NASA Administrator Sean Duffy. “Technology unlocks discovery, and we are committed to testing and proving the capabilities needed to enable the Golden Age of exploration.”
      This video details how the Deep Space Optical Communications experiment broke records and how the technology demonstration could pave the way for future high-bandwidth data transmission out to Mars distances and beyond. NASA/JPL-Caltech Record-breaking technology
      Just a month after launch, the Deep Space Optical Communications demonstration proved it could send a signal back to Earth it established a link with the optical terminal aboard the Psyche spacecraft.
      “NASA Technology tests hardware in the harsh environment of space to understand its limits and prove its capabilities,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Over two years, this technology surpassed our expectations, demonstrating data rates comparable to those of household broadband internet and sending engineering and test data to Earth from record-breaking distances.”
      On Dec. 11, 2023, the demonstration achieved a historic first by streaming an ultra-high-definition video to Earth from over 19 million miles away (about 80 times the distance between Earth and the Moon), at the system’s maximum bitrate of 267 megabits per second. The project also surpassed optical communications distance records on Dec. 3, 2024, when it downlinked Psyche data from 307 million miles away (farther than the average distance between Earth and Mars). In total, the experiment’s ground terminals received 13.6 terabits of data from Psyche.
      How it works
      Managed by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, the experiment consists of a flight laser transceiver mounted on the Psyche spacecraft, along with two ground stations to receive and send data from Earth. A powerful 3-kilowatt uplink laser at JPL’s Table Mountain Facility transmitted a laser beacon to Psyche, helping the transceiver determine where to aim the optical communications laser back to Earth.
      Both Psyche and Earth are moving through space at tremendous speeds, and they are so distant from each other that the laser signal — which travels at the speed of light — can take several minutes to reach its destination. By using the precise pointing required from the ground and flight laser transmitters to close the communication link, teams at NASA proved that optical communications can be done to support future missions throughout the solar system.
      Another element of the experiment included detecting and decoding a faint signal after the laser traveled millions of miles. The project enlisted a 200-inch telescope at Caltech’s Palomar Observatory in San Diego County as its primary downlink station, which provided enough light-collecting area to collect the faintest photons. Those photons were then directed to a high-efficiency detector array at the observatory, where the information encoded in the photons could be processed.   
      “We faced many challenges, from weather events that shuttered our ground stations to wildfires in Southern California that impacted our team members,” said Abi Biswas, Deep Space Optical Communications project technologist and supervisor at JPL. “But we persevered, and I am proud that our team embraced the weekly routine of optically transmitting and receiving data from Psyche. We constantly improved performance and added capabilities to get used to this novel kind of deep space communication, stretching the technology to its limits.”
      Brilliant new era
      In another test, data was downlinked to an experimental radio frequency-optical “hybrid” antenna at the Deep Space Network’s Goldstone complex near Barstow, California. The antenna was retrofitted with an array of seven mirrors, totaling 3 feet in diameter, enabling the antenna to receive radio frequency and optical signals from Psyche simultaneously.
      The project also used Caltech’s Palomar Observatory and a smaller 1-meter telescope at Table Mountain to receive the same signal from Psyche. Known as “arraying,” this is commonly done with radio antennas to better receive weak signals and build redundancy into the system.
      “As space exploration continues to evolve, so do our data transfer needs,” said Kevin Coggins, deputy associate administrator, NASA’s SCaN (Space Communications and Navigation) program at the agency’s headquarters. “Future space missions will require astronauts to send high-resolution images and instrument data from the Moon and Mars back to Earth. Bolstering our capabilities of traditional radio frequency communications with the power and benefits of optical communications will allow NASA to meet these new requirements.”
      This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN program within the Space Operations Mission Directorate. The Psyche mission is led by Arizona State University. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator. NASA JPL, managed by Caltech in Pasadena, California, is responsible for the mission’s overall management.
      To learn more about the laser communications demo, visit:
      https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc/
      NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase NASA’s Tech Demo Streams First Video From Deep Space via Laser Teachable Moment: The NASA Cat Video Explained News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2025-120
      Share
      Details
      Last Updated Sep 18, 2025 Related Terms
      Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      2 min read NASA Gateways to Blue Skies 2026 Competition
      Article 28 minutes ago 6 min read NASA’s Tally of Planets Outside Our Solar System Reaches 6,000
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The commercial aviation industry is a crucial component of the U.S. economy, playing a vital role in transporting people, intermediate/final goods, and driving demand for various goods and services nationwide. This network enhances the quality of life for the whole country and facilitates business interactions within and globally, boosting productivity and prosperity. However, the industry faces numerous challenges, particularly the need to reduce rising operational costs in a growing market to accommodate increased demand in air travel, e-commerce, and cargo sectors. Issues such as aging aircraft and components, technological advancements, and staffing shortages further complicate these challenges, hindering efforts to balance passenger safety with operational efficiency. To address these challenges, the industry needs to swiftly innovate and implement more efficient and resilient aircraft maintenance practices, including the adoption of new technologies. In the 2026 Gateways to Blue Skies Competition, teams will conceptualize novel aviation maintenance advancements that can be implemented by 2035 or sooner with the goal of improving efficiency, safety, and/or costs for the industry. Teams are encouraged to consider high-potential technologies and systems that aren’t currently mainstream or highly regarded as becoming mainstream in the future, imagining beyond the status quo.
      Award: $72,000 in total prizes
      Open Date: Phase 1 – September 18, 2025; Phase 2 – March 13, 2026
      Close Date: Phase 1 – February 16, 2026; Phase 2- May 15, 2026
      For more information, visit: https://blueskies.nianet.org/competition/
      View the full article
    • By NASA
      An artist’s concept of a supermassive black hole, a surrounding disk of material falling towards the black hole and a jet containing particles moving away at close to the speed of light. This black hole represents a recently-discovered quasar powered by a black hole. New Chandra observations indicate that the black hole is growing at a rate that exceeds the usual limit for black holes, called the Eddington Limit. Credit: NASA/CXC/SAO/M. WeissX-ray: NASA/CXC/INAF-Brera/L. Ighina et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole is growing at one of the fastest rates ever recorded, according to a team of astronomers. This discovery from NASA’s Chandra X-ray Observatory may help explain how some black holes can reach enormous masses relatively quickly after the big bang.
      The black hole weighs about a billion times the mass of the Sun and is located about 12.8 billion light-years from Earth, meaning that astronomers are seeing it only 920 million years after the universe began. It is producing more X-rays than any other black hole seen in the first billion years of the universe.
      The black hole is powering what scientists call a quasar, an extremely bright object that outshines entire galaxies. The power source of this glowing monster is large amounts of matter funneling around and entering the black hole.
      While the same team discovered it two years ago, it took observations from Chandra in 2023 to discover what sets this quasar, RACS J0320-35, apart. The X-ray data reveal that this black hole appears to be growing at a rate that exceeds the normal limit for these objects.
      “It was a bit shocking to see this black hole growing by leaps and bounds,” said Luca Ighina of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, who led the study.
      When matter is pulled toward a black hole it is heated and produces intense radiation over a broad spectrum, including X-rays and optical light. This radiation creates pressure on the infalling material. When the rate of infalling matter reaches a critical value, the radiation pressure balances the black hole’s gravity, and matter cannot normally fall inwards any more rapidly. That maximum is referred to as the Eddington limit.
      Scientists think that black holes growing more slowly than the Eddington limit need to be born with masses of about 10,000 Suns or more so they can reach a billion solar masses within a billion years after the big bang — as has been observed in RACS J0320-35. A black hole with such a high birth mass could directly result from an exotic process: the collapse of a huge cloud of dense gas containing unusually low amounts of elements heavier than helium, conditions that may be extremely rare.
      If RACS J0320-35 is indeed growing at a high rate — estimated at 2.4 times the Eddington limit — and has done so for a sustained amount of time, its black hole could have started out in a more conventional way, with a mass less than a hundred Suns, caused by the implosion of a massive star.
      “By knowing the mass of the black hole and working out how quickly it’s growing, we’re able to work backward to estimate how massive it could have been at birth,” said co-author Alberto Moretti of INAF-Osservatorio Astronomico di Brera in Italy. “With this calculation we can now test different ideas on how black holes are born.”
      To figure out how fast this black hole is growing (between 300 and 3,000 Suns per year), the researchers compared theoretical models with the X-ray signature, or spectrum, from Chandra, which gives the amounts of X-rays at different energies. They found the Chandra spectrum closely matched what they expected from models of a black hole growing faster than the Eddington limit. Data from optical and infrared light also supports the interpretation that this black hole is packing on weight faster than the Eddington limit allows.
      “How did the universe create the first generation of black holes?” said co-author Thomas of Connor, also of the Center for Astrophysics. “This remains one of the biggest questions in astrophysics and this one object is helping us chase down the answer.”
      Another scientific mystery addressed by this result concerns the cause of jets of particles that move away from some black holes at close to the speed of light, as seen in RACS J0320-35. Jets like this are rare for quasars, which may mean that the rapid rate of growth of the black hole is somehow contributing to the creation of these jets.
      The quasar was previously discovered as part of a radio telescope survey using the Australian Square Kilometer Array Pathfinder, combined with optical data from the Dark Energy Camera, an instrument mounted on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in Chile. The U.S. National Science Foundation National Optical-Infrared Astronomy Research Laboratory’s Gemini-South Telescope on Cerro Pachon, Chile was used to obtain the accurate distance of RACS J0320-35.
      A paper describing these results has been accepted for publication in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a quasar located 12.8 billion light-years from Earth, presented as an artist’s illustration and an X-ray image from NASA’s Chandra X-ray Observatory.
      In the artist’s illustration, the quasar, RACS J0320-35, sits at our upper left, filling the left side of the image. It resembles a spiraling, motion-blurred disk of orange, red, and yellow streaks. At the center of the disk, surrounded by a glowing, sparking, brilliant yellow light, is a black egg shape. This is a black hole, one of the fastest-growing black holes ever detected. The black hole is also shown in a small Chandra X-ray image inset at our upper right. In that depiction, the black hole appears as a white dot with an outer ring of neon purple.
      The artist’s illustration also highlights a jet of particles blasting away from the black hole at the center of the quasar. The streaked silver beam starts at the core of the distant quasar, near our upper left, and shoots down toward our lower right. The blurry beam of energetic particles appears to widen as it draws closer and exits the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Sep 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Marshall Astrophysics Marshall Space Flight Center Quasars Science & Research Supermassive Black Holes The Universe Explore More
      5 min read New NASA Mission to Reveal Earth’s Invisible ‘Halo’
      A new NASA mission will capture images of Earth’s invisible “halo,” the faint light given…
      Article 2 hours ago 5 min read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object
      In our nearby stellar neighborhood, a burned-out star is snacking on a fragment of a…
      Article 4 hours ago 4 min read NASA Artemis II Moon Rocket Ready to Fly Crew
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      New NASA Mission to Reveal Earth’s Invisible ‘Halo’
      A new NASA mission will capture images of Earth’s invisible “halo,” the faint light given off by our planet’s outermost atmospheric layer, the exosphere, as it morphs and changes in response to the Sun. Understanding the physics of the exosphere is a key step toward forecasting dangerous conditions in near-Earth space, a requirement for protecting Artemis astronauts traveling through the region on the way to the Moon or on future trips to Mars. The Carruthers Geocorona Observatory will launch from NASA’s Kennedy Space Center in Florida no earlier than Tuesday, Sept. 23.
      Revealing Earth’s invisible edge
      In the early 1970s, scientists could only speculate about how far Earth’s atmosphere extended into space. The mystery was rooted in the exosphere, our atmosphere’s outermost layer, which begins some 300 miles up. Theorists conceived of it as a cloud of hydrogen atoms — the lightest element in existence — that had risen so high the atoms were actively escaping into space.
      But the exosphere reveals itself only via a faint “halo” of ultraviolet light known as the geocorona. Pioneering scientist and engineer Dr. George Carruthers set himself the task of seeing it. After launching a few prototypes on test rockets, he developed an ultraviolet camera ready for a one-way trip to space.
      Apollo 16 astronaut John Young is pictured on the lunar surface with George Carruthers’ gold-plated Far Ultraviolet Camera/Spectrograph, the first Moon-based observatory. The Lunar Module “Orion” is on the right and the Lunar Roving Vehicle is parked in the background next to the American flag. NASA In April 1972, Apollo 16 astronauts placed Carruthers’ camera on the Moon’s Descartes Highlands, and humanity got its first glimpse of Earth’s geocorona. The images it produced were as stunning for what they captured as they were for what they didn’t.
      “The camera wasn’t far enough away, being at the Moon, to get the entire field of view,” said Lara Waldrop, principal investigator for the Carruthers Geocorona Observatory. “And that was really shocking — that this light, fluffy cloud of hydrogen around the Earth could extend that far from the surface.” Waldrop leads the mission from the University of Illinois Urbana-Champaign, where George Carruthers was an alumnus.
      The first image of UV light from Earth’s outer atmosphere, the geocorona, taken from a telescope designed and built by George Carruthers. The telescope took the image while on the Moon during the Apollo 16 mission in 1972. G. Carruthers (NRL) et al./Far UV Camera/NASA/Apollo 16 Our planet, in a new light
      Today, the exosphere is thought to stretch at least halfway to the Moon. But the reasons for studying go beyond curiosity about its size.
      As solar eruptions reach Earth, they hit the exosphere first, setting off a chain of reactions that sometimes culminate in dangerous space weather storms. Understanding the exosphere’s response is important to predicting and mitigating the effects of these storms. In addition, hydrogen — one of the atomic building blocks of water, or H2O — escapes through the exosphere. Mapping that escape process will shed light on why Earth retains water while other planets don’t, helping us find exoplanets, or planets outside our solar system, that might do the same.
      NASA’s Carruthers Geocorona Observatory, named in honor of George Carruthers, is designed to capture the first continuous movies of Earth’s exosphere, revealing its full expanse and internal dynamics.
      “We’ve never had a mission before that was dedicated to making exospheric observations,” said Alex Glocer, the Carruthers mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s really exciting that we’re going to get these measurements for the first time.”
      Download this video from NASA’s Scientific Visualization Studio.
      Journey to L1
      At 531 pounds and roughly the size of a loveseat sofa, the Carruthers spacecraft will launch aboard a SpaceX Falcon 9 rocket along with NASA’s IMAP (Interstellar Mapping and Acceleration Probe) spacecraft and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On – Lagrange 1) space weather satellite. After launch, all three missions will commence a four-month cruise phase to Lagrange point 1 (L1), a location approximately 1 million miles closer to the Sun than Earth is. After a one-month period for science checkouts, Carruthers’ two-year science phase will begin in March 2026.
      Artist’s concept of the five Sun-Earth Lagrange points in space. At Lagrange points, the gravitational pull of two large masses counteract, allowing spacecraft to reduce fuel consumption needed to remain in position. The L1 point of the Earth-Sun system affords an uninterrupted view of the Sun and will be home to three new heliophysics missions in 2025: NASA’s Interstellar Mapping and Acceleration Probe (IMAP), NASA’s Carruthers Geocorona Observatory, and NOAA’s Space Weather Follow-On – Lagrange 1 (SWFO – L1). NASA’s Conceptual Image Lab/Krystofer Kim From L1, roughly four times farther away than the Moon, Carruthers will capture a comprehensive view of the exosphere using two ultraviolet cameras, a near-field imager and a wide-field imager.
      “The near-field imager lets you zoom up really close to see how the exosphere is varying close to the planet,” Glocer said. “The wide-field imager lets you see the full scope and expanse of the exosphere, and how it’s changing far away from the Earth’s surface.”
      The two imagers will together map hydrogen atoms as they move through the exosphere and ultimately out to space. But what we learn about atmospheric escape on our home planet applies far beyond it.
      “Understanding how that works at Earth will greatly inform our understanding of exoplanets and how quickly their atmospheres can escape,” Waldrop said.
      By studying the physics of Earth, the one planet we know that supports life, the Carruthers Geocorona Observatory can help us know what to look for elsewhere in the universe.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. The Space Sciences Laboratory at the University of California, Berkeley leads mission implementation, design and development of the payload in collaboration with Utah State University’s Space Dynamics Laboratory. The Carruthers spacecraft was designed and built by BAE Systems. NASA’s Explorers and Heliophysics Projects Division at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington.
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 18, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division NASA Directorates Science & Research Science Mission Directorate Uncategorized Explore More
      5 min read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object


      Article


      3 hours ago
      6 min read NASA’s IMAP Mission to Study Boundaries of Our Home in Space


      Article


      1 day ago
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...