Jump to content

Beyond the Textbook: DC-8 Aircraft Inspires Students in Retirement


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of 22 students pose on a stairway descending from an aircraft door. The plane and stairway are white, on a sunny tarmac.
Idaho State University class of 2025 poses with their new hands-on learning tool, the DC-8 aircraft, after it was retired from NASA in May 2024 and arrived in Pocatello, Idaho. The university will use the aircraft to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program.
Idaho State University

In May 2024, Idaho State University’s class of 2025 received a new learning tool from NASA. The DC-8 aircraft served the world’s scientific community for decades as a platform under NASA’s Airborne Science Program before retiring to Idaho State University (ISU) to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program. 

“The DC-8 has quickly become a cornerstone of our Aircraft Maintenance Technology program at ISU,” said Jake Dixon, Director of Marketing and Recruitment at the ISU College of Technology. “It has already enhanced our summer classes ahead of its full integration with the start of the new school year this fall.” 

The DC-8 flew its final flight from NASA’s Armstrong Flight Research Center in Edwards, California to Idaho State University in Pocatello, Idaho in May 2024. That flight represented the retirement of the aircraft after 37 years of supporting airborne science missions as a NASA aircraft. 

“The opportunity for students to interact firsthand with the aircraft’s systems and features significantly extends their learning beyond what theory or textbooks can provide,” Dixon said.

A large white plane and smaller chase plane fly over the top of a building with a NASA logo on the front. A sunny blue sky is behind the building and planes.
The DC-8 flies low for the last time over NASA’s Armstrong Flight Research Center in Edwards, California, before it retires to Idaho State University in Pocatello, Idaho. The DC-8 is providing real-world experience to train future aircraft technicians at the college’s Aircraft Maintenance Technology Program.
NASA/Genaro Vavuris

The DC-8 served as an educational platform for years. Beginning in 2009, the DC-8 functioned as an airborne science laboratory for NASA’s Student Airborne Research Program (SARP), where rising-senior undergraduates were selected to participate in a real science campaign and acquire hands-on research experience. The educational impact of the DC-8 is evident in the professional growth of scientists who have experienced it. 

“Almost everything I’ve learned about using an airplane to collect scientific data can be linked back to my time flying projects on the DC-8.” says Jonathan Zawislak, Flight Director with the Aircraft Operations Center at the National Oceanic and Atmospheric Administration (NOAA). “It has left an indelible mark on the Earth science community and no doubt paved the way for a new generation of scientists, as it did for me and my career as a science aviator.”

AFRC2023-0100-53~large.jpg?w=1920&h=1280
NASA Armstrong’s Student Airborne Research Program celebrated 15 years of success in 2023. An eight-week summer internship program, SARP offered upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a scientific campaign using NASA Airborne Science Program flying science laboratories – aircraft outfitted specifically for research projects.
NASA/Carla Thomas

Real-life platforms like the DC-8 are an exciting and meaningful learning tool that enable college students to go beyond the textbook, and they make a lasting impact on communities adjacent to its activities. 

“We have seen so much enthusiasm surrounding the DC-8’s arrival that we are organizing an open house in the future to allow the community and aviation enthusiasts alike to explore this historic aircraft,” said Dixon. “Doing so will help preserve the remarkable legacy of the DC-8, ensuring it continues to inspire and educate for years to come.” 

Whether as a science platform or as a unique aircraft, the DC-8 has a legacy that continues to inspire and educate generations of scientists, engineers, and aviators. 

Learn more about NASA’s SARP program 

Learn more about the retired DC-8 aircraft Learn more about NASA’s Armstrong Flight Research Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Rebecca Anderson, a junior enrolled at the Portage School of Leaders High School in South Bend, Indiana, spent time with NASA Glenn Research Center’s Daniel Sutliff, an acoustic engineer, on the campus of the University of Notre Dame on Nov. 7, 2024. Students witnessed the operation of the Advanced Noise Control Fan owned by NASA and on loan to the university for STEM experiences.Credit: Matt Cashore/University of Notre Dame High school students in Indiana are contributing to NASA’s groundbreaking research to develop quieter, more fuel-efficient aircraft engines.
      Their learning experience is a collaboration between aircraft noise researchers from NASA’s Glenn Research Center in Cleveland and educators from the University of Notre Dame’s Turbomachinery Laboratory. The collaboration aims to encourage students’ interest in science, technology, engineering, and math (STEM) careers.
      Recently, Notre Dame hosted students from The Portage School of Leaders High School and a team from NASA Glenn to see the Advanced Noise Control Fan operate in an outdoor setting. The fan is a NASA-owned test rig that has been configured to enable the study of a quieter aircraft engine technology. Known as the open rotor fan concept, the configuration involves an engine fan without a cover. Ground microphones were used during the test operated by Notre Dame to evaluate the radiated sound as the open rotor fan spun at various speeds.
      NASA’s Advanced Noise Control Fan is on loan at the University of Notre Dame through a Space Act Agreement. It provides a hands-on learning laboratory for students in STEM.Credit: Matt Cashore/University of Notre Dame Students from the high school, which is part of the Career Academy Network of Public Schools, used 3D printers from the school’s facilities to fabricate parts for the open rotor test fan. The parts, known as stator blades, help direct and control airflow, ensuring smooth operation of the large, exposed fan blades that are the defining feature of an open fan engine design.
      “It was beyond words,” said Rebecca Anderson, a junior from the high school. “The part I enjoyed most was when they got the fan running. It was really impressive to see how quiet it was. I feel like everyone involved in STEM would love to work for NASA, including me.”
      NASA researcher Dr. Daniel Sutliff was part of the team from NASA Glenn to spend time mentoring the students.
      “This is real-world, hands-on research for them,” Sutliff said. “If airlines are able to use technologies to make flight quieter and cleaner, passengers will have more enjoyable flights.”
      The Advanced Noise Control Fan is on loan to Notre Dame from NASA through a Space Act Agreement. The fan research is supported by NASA’s Advanced Air Transport Technology project and its Efficient Quiet Integrated Propulsors technical challenge.
      Explore More
      2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 28 mins ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 21 hours ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors 
      Article 21 hours ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).NASA/JPL-Caltech/LANL/CNES/CNRS The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.
      Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.
      The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72. NASA/JPL-Caltech Final Ascent
      Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.
      What Happened
      “When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”
      The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.
      This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach. One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.
      Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.
      This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades. NASA/JPL-Caltech Down but Not Out
      Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.
      “Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”
      Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.
      During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)
      “Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.
      More About Ingenuity
      The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
      For more information about Ingenuity:
      https://mars.nasa.gov/technology/helicopter
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-171
      Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Ingenuity (Helicopter) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Perseverance (Rover) Explore More
      3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
      Article 2 days ago 3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
      Article 5 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA, along with members of the FAA and commercial drone engineers, gathered in the Dallas area May 25, 2024, to view multiple delivery drones operating in a shared airspace beyond visual line of sight using an industry-developed, NASA-originated uncrewed aircraft system traffic management system.NASA NASA’s Uncrewed Aircraft Systems Traffic Management Beyond Visual Line of Sight (UTM BVLOS) subproject aims to support the growing demand for drone flights across the globe.  
      Uncrewed aircraft systems (UAS), or drones, offer an increasing number of services, from package delivery to critical public safety operations, like search and rescue missions. However, without special waivers, these flights are currently limited to visual line of sight – or only as far as the pilot can see – which is roughly no farther than one mile from the operator. As the FAA works to authorize flights beyond this point, NASA is working with industry and the Federal Aviation Administration (FAA) to operationalize an uncrewed traffic management system for these operations.  
      NASA’s UTM Legacy  
      NASA’s Uncrewed Aircraft Systems Traffic Management, or UTM, was first developed at NASA’s Ames Research Center in California’s Silicon Valley in 2013, and enables drones to safely and efficiently integrate into air traffic that is already flying in low-altitude airspace. UTM is based on digital sharing of each user’s planned flight details, ensuring each user has the same situational awareness of the airspace. 
      NASA performed a series of drone flight demonstrations using UTM concepts in rural areas and densely populated cities under the agency’s previous UTM project . And commercial drone companies have since utilized NASA’s UTM concepts and delivery operations in limited areas.  
      Several projects supporting NASA’s Advanced Air Mobility or AAM mission are working on different elements to help make AAM a reality and one of these research areas is automation.NASA / Graphics UTM Today 
      NASA research is a driving force in making routine drone deliveries a reality. The agency is supporting a series of commercial drone package deliveries beyond visual line of sight, some of which kicked off in August 2024 in Dallas, Texas. Commercial operators are using NASA’s UTM-based capabilities during these flights to share data and planned flight routes with other operators in the airspace, detect and avoid hazards, and maintain situational awareness. All of these capabilities allow operators to safely execute their operations in a shared airspace below 400 feet and away from crewed aircraft. These drone operations in Dallas are a collaboration between NASA, the FAA, industry drone operators, public safety operators, and others. 
      These initial flights will help validate UTM capabilities through successful flight operation evaluations and inform the FAA’s rulemaking for safely expanding drone operations beyond visual line of sight. 
      The agency will continue to work with industry and government partners on more complex drone operations in communities across the country. NASA is also working with partners to leverage UTM for other emerging operations, including remotely piloted air cargo delivery and air taxi flights. UTM infrastructure could also support high-altitude operations for expanded scientific research, improved disaster response, and more. 
      NASA UTM BVLOS 
      NASA’s UTM Beyond Visual Line of Site (UTM BVLOS) subproject is leading this effort, under the Air Traffic Management eXploration portfolio within the agency’s Aeronautics Research Mission Directorate. This work is in support of NASA’s Advanced Air Mobility Mission, which seeks to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronauts Nick Hague and Suni Williams aboard the International Space Station on Oct. 15, 2024. (Credit: NASA) Students from U.S. military families based overseas will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions.
      On Wednesday, Dec. 11, NASA astronauts Nick Hague and Suni Williams will respond to questions submitted by students from Stuttgart Elementary, followed by another call on Thursday, Dec. 12, with Nick Hague answering questions from Kwajalein School System students.
      Watch the 20-minute space-to-Earth calls on NASA+ at 12:25 p.m. and 4:25 p.m. EST, respectively. Learn how to watch NASA content on various platforms, including social media.  
      Stuttgart Elementary, part of the Department of Defense Education Activity’s Europe East District, will host a space-themed science, technology, engineering, and mathematics (STEM) night, featuring a live education downlink as the evening’s highlight. The school, located on Panzer Kaserne near Stuttgart, serves military-connected students from pre-kindergarten to grade five. Media interested in covering the event in person must RSVP by 5 p.m., Tuesday, Dec. 10, to Chrissy Mitchell at chrissy.mitchell@dodea.edu or 0-631-7106-7060.
      Additionally, the Kwajalein School System, situated on a secure army installation on Kwajalein Island in the Republic of the Marshall Islands, will host an event that brings together local STEM resources to inspire students. For media access, RSVP to Sherman Hogue at sherman.hogue.civ@army.mil or 808-580-4848.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Members belonging to one of three teams from Oakwood School aim their devices — armed with chocolate-coated-peanut candies — at a target during JPL’s annual Invention Challenge on Dec. 6.NASA/JPL-Caltech Teams competed with homemade devices to try to launch 50 peanut candies in 60 seconds into a target container.NASA/JPL-Caltech More points were awarded for successfully landing the candy into the highest, smallest level of the triangular Plexiglas target — not an easy task.NASA/JPL-Caltech Treats went flying through the air by the dozens at the annual Invention Challenge at NASA’s Jet Propulsion Laboratory.
      The 25th Invention Challenge at NASA’s Jet Propulsion Laboratory in Southern California, which welcomed more than 200 students to compete using home-built devices, was pretty sweet this year. Literally.
      That’s because the challenge at the Friday, Dec. 6, competition was to construct an automated machine that would launch, within 60 seconds, 50 chocolate-coated-peanut candies over a barrier and into a triangular Plexiglas container 16 feet (5 meters) away. The mood was tense as teachers, parents, and JPL employees watched the “Peanut Candy Toss Contest” from the sidelines, some of them eating the ammunition.
      Students on 21 teams from Los Angeles and Orange county middle and high schools turned to catapults, slingshots, flywheels, springs, and massive rubber bands. There was lots of PVC piping. A giant device shaped like a blue bunny shot candy out of its nose with the help of an air compressor, while other entries relied on leaf blowers and vacuums.
      A team from Santa Monica High School won the 2024 Invention Challenge at JPL on Dec. 6 with a device was based on a crossbow.NASA/JPL-Caltech Some were more successful than others. Ultimately, it was an old-school design that won first place for a team from Santa Monica High School: a modified crossbow.
      “I tried to come up with something that was historically tried and true,” said Steele Winterer, a senior on the team who produced the initial design. Like his teammates, Steele is in the school’s engineering program and helped build the device during class. He described the process as “nerve-wracking,” “messy,” and “disorganized,” but everyone found their role as the design was refined.
      Second and third place went to teams from Oakwood School in North Hollywood, which both took a firing-line approach, using four parallel wooden devices, with one student per device firing after each other in quick succession.
      Two regional Invention Challenges held at Costa Mesa High School and Augustus Hawkins High School in South L.A. last month had winnowed the field to the 21 teams invited to the final event at JPL. At the finals, three JPL-sponsored teams from out-of-state schools and two teams that included adult engineers faced off in a parallel competition. In this second competition group, retired JPL engineer Alan DeVault took first place, followed by Boston Charter School of Science coming in second, and Centaurus High School from Colorado in third.
      Competing with a wooden device at the 2024 Invention Challenge, retired JPL engineer and longtime participant Alan DeVault won first place among JPL-sponsored teams, which included professionals and out-of-state students. Challenge organizer Paul MacNeal kneels at right.NASA/JPL-Caltech Held since 1998 (with a two-year break during the COVID-19 pandemic), the contest was designed by JPL mechanical engineer Paul MacNeal to inspire students to discover a love for building things and solving problems. Student teams spend months designing, constructing, and testing their devices to try to win the new challenge that MacNeal comes up with each year.
      “When student teams come to the finals, they are engaged just as engineers are engaged in the work we do here at JPL,” MacNeal said. “It’s engineering for the joy of it. It’s problem-solving but it’s also team building. And it’s unique because the rules change every year. The student teams get to see JPL engineering teams compete side by side. I started this contest to show students that engineering is fun!”
      The event is supported by dozens of volunteers from JPL, which is managed by Caltech in Pasadena for NASA.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-166
      Share
      Details
      Last Updated Dec 06, 2024 Related Terms
      Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events
      Article 2 days ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...