Members Can Post Anonymously On This Site
Beyond the Textbook: DC-8 Aircraft Inspires Students in Retirement
-
Similar Topics
-
By NASA
Explore This Section Science Science Activation NASA Science Supports Data… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
NASA Science Supports Data Literacy for K-12 Students
Data – and our ability to understand and use it – shapes nearly every aspect of our world, from decisions in our lives to the skills we need in the workplace and more. All of us, as either producers or consumers of data, will experience how it can be used to problem-solve and think critically as we navigate the world around us. For that reason, Data Science has become an increasingly essential and growing field that combines the collection, organization, analysis, interpretation, and sharing of data in virtually every area of life. As more data become more openly available, our Data Science skills will be of increasing importance. And yet, there is a widening gap between what students learn in school and the skills they will need to succeed in a data-driven world. The integration of Data Science into K-12 education opens doors to higher education, high-paying careers, and empowering learners to eventually participate in the creation of new knowledge and understanding of our world, and at least 29 states have reported some level of data science implementation at the K-12 level, including standard or framework adoption, course piloting, and educator professional learning.
In February 2025, the first-ever Data Science Education K-12: Research to Practice Conference (DS4E) took place in San Antonio, TX. A number of representatives from NASA’s Science Activation program and other NASA partners attended and presented along with over 250 educators, researchers, and school leaders from across the nation. Science Activation projects share a passion for helping people of all ages and backgrounds connect with NASA science experts, content, experiences, and learning resources, and the AEROKATS & ROVER Education Network (AREN); Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES); Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth; and My NASA Data teams did just that. Their presentations at the conference included:
“BYOD – Build or Bring Your Own Data: Developing K-12 Datasets” (PLACES) “Using NASA Data Resources as a Tool to Support Storytelling with Data in K-12 Education” (My NASA Data) “Place-Based Data Literacy: Real People, Real Places, Real Data” (AREN) Conference participants expressed interest in learning more about NASA assets, including data and subject matter experts. Stemming from their participation in this first DS4E, several Science Activation teams are collaborating to potentially host regional events next year under the umbrella of this effort (PLACES in particular), a wonderful example of how Science Activation project teams help lead the charge in the advancement of key Science, Technology, Education, and Mathematics (STEM) fields, such as Data Science, to activate minds and promote a deeper understanding of our world and beyond.
Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Data Science Education K-12 Research to Practice Conference Share
Details
Last Updated Apr 09, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Opportunities For Researchers to Get Involved Explore More
3 min read Findings from the Field: A Research Symposium for Student Scientists
Article
1 day ago
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
1 day ago
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
2 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
NASA astronaut and SpaceX Crew-10 Pilot Nichole Ayers.Credit: SpaceX Students from Dade City, Florida, will have the chance to connect with NASA astronaut Nichole Ayers as she answers prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 1 p.m. EDT on Friday, April 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
The event, hosted by Academy at the Farm and open to students and their families, will occur in Dade City. Academy at the Farm is a charter school that plans to use the event to connect the students with space exploration and the work being done aboard the space station.
Media interested in covering the event must RSVP by 5 p.m., Wednesday, April 9, to Ashley Cantwell at acantwell@academyatthefarm.com or 813-957-8878.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Apr 08, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research Johnson Space Center View the full article
-
By NASA
4 Min Read Ways Community College Students Can Get Involved With NASA
For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
NASA Community College Aerospace Scholars
Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
NASA Student Challenges
NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
NASA NASA RockOn! and RockSat Programs
Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
NASA Wallops/Terry Zaperach NASA Internships
Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
NASA National Space Grant College and Fellowship Program
The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
NASA Additional Resources
NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
View the full article
-
By NASA
Thomas Ozoroski, a researcher at NASA’s Glenn Research Center in Cleveland, takes icing accretion measurements in October 2024 as part of transonic truss-braced wing concept research. Researchers at NASA Glenn conducted another test campaign in March 2025.Credit: NASA/Jordan Cochran In the future, aircraft with long, thin wings supported by aerodynamic braces could help airlines save on fuel costs. But those same wings could be susceptible to ice buildup. NASA researchers are currently working to determine if such an issue exists, and how it could be addressed.
In the historic Icing Research Tunnel at NASA’s Glenn Research Center in Cleveland, scientists and engineers are testing a concept for a transonic truss-braced wing. Their goal: to collect important data to inform the design of these potential efficient aircraft of the future.
This artist’s concept shows the transonic truss-braced wing concept. NASA’s Advanced Air Transport Technology project is exploring the design, which involves a longer, thinner wing structure with struts to enhance aerodynamic efficiency and reduce fuel consumption.Credit: NASA A transonic truss-braced wing generates less drag in flight compared to today’s aircraft wings, requiring an aircraft to burn less fuel. This revolutionary design could make the wing more prone to ice buildup, so it must undergo a series of rigorous tests to predict its safety and performance. The data the research team has collected so far suggests large sections of the frontmost part of the wing (also known as the leading edge) will require an ice protection system, similar to those found on some commercial aircraft.
NASA Glenn can simulate icing conditions in its Icing Research Tunnel to identify potential challenges for new aircraft designs. These tests provide important information about how ice builds up on wings and can help identify the most critical icing conditions for safety. All commercial aircraft must be approved by the Federal Aviation Administration to operate in all kinds of weather.
Because of the thinness of transonic truss-braced wing design, ice tends to build up during cold conditions, as seen during a test in October 2024. Researchers at NASA’s Glenn Research Center in Cleveland conducted another test campaign in March 2025, collecting important data to ensure safety. Credit: NASA/Jordan Cochran This research is part of NASA’s work to mature transonic truss-braced technology by looking at issues including safety and how future aircraft could be integrated into U.S. aviation infrastructure. Boeing is also working with NASA to build, test, and fly the X-66, a full-sized demonstrator aircraft with transonic truss-braced wings. Because the experimental aircraft will not be flown in icy conditions, tests in the Icing Research Tunnel are providing answers to questions about ice buildup.
This work advances NASA’s role in developing ultra-efficient airliner technologies that are economically, operationally, and environmentally sustainable. For about two decades, NASA has invested in research aimed at advancing transonic truss-braced wing technology to the point where private sector aeronautics companies can integrate it into commercial aircraft configurations. NASA invests in this research through initiatives including its Advanced Air Transport Technology project, which investigates specific performance aspects of transonic truss-braced wing concepts, such as icing. The Advanced Air Transport Technology project is part of NASA’s Advanced Air Vehicles Program.
Explore More
3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition
Article 2 weeks ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 2 weeks ago 3 min read NASA Selects Three University Teams to Participate in Flight Research
Article 2 weeks ago View the full article
-
By NASA
NASA astronaut and Pilot for NASA’s SpaceX Crew-10 mission Nichole Ayers is pictured training inside a mockup of a Dragon cockpit at the company’s facilities in Hawthorne, California. Credit: SpaceX Students from Richmond Hill, New York,will have the chance to connect with NASA astronauts Anne McClain and Nichole Ayers as they answer prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 12 p.m. EDT on Wednesday, March 26, on NASA+ and learn how to watch NASA content on various platforms, including social media.
The event, open to students and their families, will be hosted by Richmond Hill High School, a New York City public high school in Queens South, District 27. The school’s goal is to inspire their students to pursue STEM careers.
Media interested in covering the event must contact Lilly Donaldson at Lily@arttechnically.org by 5 p.m., Monday, March 24.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Mar 21, 2025 LocationNASA Headquarters Related Terms
Learning Resources In-flight Education Downlinks Outside the Classroom View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.