Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

HuLC Seal and Text Logo with 2025 Competition Moonscape Image

In-space propulsion systems utilizing cryogenic liquids as propellants are necessary to achieve NASA’s exploration missions to the Moon, and later to Mars. In current state of the art (SOA) human scale, in-space propulsion vehicles, cryogenic liquids can be stored for several hours. For the planned HLS mission architecture to close, cryogenic liquids must be stored on-orbit on the order of several months. NASA’s 2025 HuLC Competition asks student teams to develop innovative, systems-level solutions to understand, mitigate potential problems, and mature advanced cryogenic fluid technologies that can be implemented within 3-5 years. Based on a review of proposal package submissions, up to 12 Finalist Teams will be selected to receive a monetary award to continue developing their concepts and facilitate full participation in the HuLC Forum, held in Huntsville, AL in June 2025.

  • Sponsoring/Partner Organizations: The Human Lander Challenge is sponsored by NASA’s Exploration Systems Development Mission Directorate’s (ESDMD’s) Human Landing System (HLS) Program Office and managed by the National Institute of Aerospace (NIA).   
  • Action Required: Student teams will submit a 5-7-page Proposal and 2-minute Video summarizing the team’s proposal concept.   
  • Deadline: Proposal and Video Submissions are due March 3, 2025. View the 2025 HuLC Competition Guidelines here.   
  • Forum & Award: Up to 12 finalist teams will be selected to receive a $9,250 Development Stipend to facilitate full participation in the HuLC Competition Forum, held in Huntsville, AL in June 2025. The Top 3 Placing Teams will share a prize purse of $18,000.   
  • Frequency: Annual; Themes vary by year.   
  • Contact: HuLC@nianet.org   

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      13 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.
      The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.
      Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.
      The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.
      A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A
      Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.
      USRC Awards
      Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
      Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
      Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
      Faculty Mentors: Jaewon Kim and Sandip Roy
      Selected: 2025
      Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
      Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
      Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
      Faculty Mentor: Felix Ewere
      Selected: 2025
      Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
      Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
      Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
      Faculty Mentor: Omid Beik
      Selected: 2024
      Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
      Mitigating wildfires with drone released fire retardant pellets.
      Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
      Faculty Mentor: Janet McLarty-Schroeder
      Selected: 2024
      Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
      Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
      Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
      Faculty Mentor: Sanjiban Choudhury, Susan Fussell
      Selected: 2024
      Crowdfunding Website
      Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
      Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
      Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
      Faculty Mentor: Fiona Spencer, Robert Breidenthal
      Selected: 2024
      Crowdfunding Website

      Web Article: “Students win NASA grant to develop AI for safer aerial traffic“
      Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
      An ocean-based fueling station and a survey drone that can refuel in remote areas.
      Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
      Faculty Mentor: Li Qiao
      Selected: 2023
      Crowdfunding Website
      Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
      Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
      Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
      Faculty Mentor: Xiangyu Meng
      Selected: 2023
      Crowdfunding Website
      Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
      Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
      Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
      Faculty Mentor: Cynthia Flores
      Selected: 2023
      Crowdfunding Website
      Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
      Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
      Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
      Faculty Mentor: Sergey V. Drakunov
      Selected: 2023
      Crowdfunding Website

      Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge“
      AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
      Creating new propeller blades and fixed wing design concepts that mimic the features of an
      owl feather and provide substantial noise reduction benefits.
      Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
      Faculty Mentor: Bhisham Sharma
      Selected: 2023
      Crowdfunding Website
      Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
      Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
      Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
      Faculty Mentor: Woongkul Lee
      Selected: 2023
      Crowdfunding Website

      LEADS team Website
      UAM Contingency Diagnosis Toolkit (Ohio State University)
      A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
      Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
      Faculty Mentor: Martijn IJtsma
      Selected: 2023
      Crowdfunding Website

      Project Website

      Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge“
      Hybrid Quadplane Search and Rescue Missions (NC A&T University)
      An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
      Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
      Faculty Mentor: A. Homaifar
      Selected: 2023
      Crowdfunding Website
      Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
      An autonomous water sampling drone system.
      Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
      Faculty Mentor: Onur Bilgen
      Selected: 2023
      Crowdfunding Website

      Project Website
      Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
      A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
      Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
      Faculty Mentor: John Lewandowski
      Selected: 2023
      Crowdfunding Website

      Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine“
      Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
      Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
      Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
      Faculty Mentor: Venkatesan Muthukumar
      Selected: 2022
      Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
      Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
      Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
      Faculty Mentor: Adam Nokes
      Selected: 2022
      Crowdfunding Website

      Project Website

      Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge“
      Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
      Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
      Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
      Faculty Mentor: Victor Maldonado 
      Selected: 2022
      Crowdfunding Website

      Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies“
      Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
      A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
      Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
      Faculty Mentor: Bo Zou
      Selected: 2022
      Crowdfunding Website

      Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems“
      Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
      A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
      Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
      Faculty Mentor: Naira Hovakimyan
      Selected: 2022
      Crowdfunding Website

      Web Article: “NASA funds UAV traffic management research“
      AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
      An aerostat enabled low-energy UAV payload delivery system
      Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
      Faculty Mentor: Suresh Advani
      Selected: 2022
      Crowdfunding Website
      Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
      An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
      Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
      Faculty Mentor: Edward DeMauro
      Selected: 2022
      Crowdfunding Website

      Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge“

      A recorded STRATO USRC Tech Talk
      Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
      Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
      Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
      Faculty Mentor: Jane Cleland-Huang
      Selected: 2021
      Crowdfunding Website

      Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology“
      Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
      A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
      Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
      Faculty Mentor: Woongkul Lee
      Selected: 2021
      AIDED Crowdfunding Website

      AIDED Project Website or Team Website

      Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA“

      A recorded USRC Tech Talk
      Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
      A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
      Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
      Faculty Mentor: Christopher Williams
      Selected: 2021
      Crowdfunding Website

      RAV-FAB Project Website

      Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech“

      NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants“

      Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect

      Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube

      View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2
      Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
      A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
      Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
      Faculty Mentor: Atieh Moridi
      Selected: 2021
      Crowdfunding Website

      AMAS Project Website

      Web Article: “Students win NASA challenge with 3D-printer smart sensor“

      A recorded USRC Tech Talk on this topic
      AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
      A drone swarm system capable of carrying a payload in the air indefinitely
      Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
      Faculty Mentor: Jeff Eldredge
      Selected: 2020
      Crowdfunding Website

      AVIATA Project Website

      A recorded USRC Tech Talk on AVIATA

      The recorded poster session at the TACP Showcase 2021
      Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
      A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
      Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
      Faculty Mentor: John Robbins
      Selected: 2020
      Crowdfunding Website

      Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition“

      Follow the team’s progress at: https://www.facebook.com/Assured Autonomy

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
      Extending drone delivery distance with a multi-mode hybrid delivery system
      Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
      Faculty Mentor: Onur Bilgen
      Selected: 2020
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
      Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
      Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
      Faculty Mentor: Kelly Griendling
      Selected: 2020
      Go to AVIS team site

      A recorded USRC Tech Talk on AVIS

      The recorded poster session at the TACP Showcase 2021

      NASA Web Article
      Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
      Model and test powertrain to maximize the efficiency of hybrid airplanes
      Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
      Faculty Mentor: Paulo Iscold
      Selected: 2019
      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      ATLAS Air Transportation (South Dakota State University)
      A multipurpose, automated drone capable of comfortably lifting the weight of an average person
      Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS

      The recorded poster session at the TACP Showcase 2021
      Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
      A novel solution of enhanced GPS navigation for unmanned aerial vehicles
      Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
      Faculty Mentors: Marco Ciarcia, Todd Letcher
      Selected: 2019
      Crowdfunding Website

      A recorded USRC Tech Talk on this topic

      The recorded poster session at the TACP Showcase 2021
      UAV Traffic Information Exchange Network (Purdue University)
      A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
      Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
      Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
      Selected: 2018
      Web Article: “Student-developed communication network for UAVs interests NASA“
      The recorded poster session at the TACP Showcase 2021
      University Student Research Challenge
      University Leadership Initiative
      University Innovation Project
      Transformative Aeronautics Concepts Program
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA University Research Program Makes First Award to a Community College Project
      Article 1 month ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards
      Article 1 month ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Follow Us on Social Media
      Explore NASA’s History
      Share
      Details
      Last Updated Apr 03, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      University Student Research Challenge View the full article
    • By NASA
      3 Min Read Lagniappe for April 2025
      Explore the April 2025 issue, highlighting the NASA-sponsored FIRST Robotics competition, Space Flight Awareness honorees and more! Credits: NASA/Danny Nowlin Explore Lagniappe for April 2025 featuring:
      NASA-Sponsored FIRST Robotics Welcomes Teams to Magnolia Regional NASA Leaders Visit Representatives Blood Moon in South Mississippi Gator Speaks
      Gator SpeaksNASA/Stennis New beginnings feel a lot like the month of April. It is the heart of spring and the season that symbolizes growth and renewal.
      April is the perfect time to break free from old routines and try something new.
      If you have landed here in this website corner of our digital world, consider this your open invitation to continue ahead on the journey with NASA Stennis by following us on social media.
      It is time to say goodbye to the Lagniappe publication as we know it, but do not worry. All of the great news about the center and its frontline activities still will be available, just in a new way – via our social media platforms! Gator wants you to feel more connected than ever as we continue to help power space dreams in south Mississippi. Moving forward, join NASA Stennis in our digital playground for even more of that extra-something special.
      This playground is not limited to only fun, or making new friends, or learning new stuff.
      Whether you are on Facebook, Instagram, YouTube, or X, there is a place, and space, for all of that and more. 
      As we close out the website edition of NASA Stennis Lagniappe, we turn the page and look forward to new possibilities ahead.
      Let’s keep building one connection at a time because here at America’s largest rocket propulsion test site, it is more than just content.
      It is where the NASA Stennis team will continue building on its proven expertise in all areas of work, and where you will have a front row seat to experience it unfold.
      So, click the links below to become a NASA Stennis follower today. Then, invite your friends to become followers as well.
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis > Back to Top
      NASA Stennis Top News
      NASA-Sponsored FIRST Robotics Welcomes Teams to Magnolia Regional
      NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin > Back to Top
      Center Activities
      NASA Leaders Visit Representatives
      U.S. Sen. Cindy Hyde-Smith of Mississippi, center, greets NASA Stennis Deputy Director Christine Powell, right, and NASA Stennis Legislative Affairs Officer and Chief of Staff Troy Frisbie on March 4. Powell and Frisbie visited with Smith and other congressional members in conjunction with the recent NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis U.S. Sen. Roger Wicker of Mississippi welcomes NASA Stennis Deputy Director Christine Powell and other guests on March 5. Powell visited Wicker in conjunction with the NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis U.S. Rep. Mike Ezell of Mississippi, fourth from right, stands with acting NASA Kennedy Space Center Director Kelvin Manning, fifth from right; NASA Stennis Deputy Director Christine Powell, third from right; NASA Stennis Legislative Affairs Officer and Chief of Staff Troy Frisbie, far left; and several congressional staff members March 5. The NASA officials visited with Ezell and other congressional members in conjunction with the recent NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis NASA Space Flight Awareness Program Recognizes Stennis Employees
      NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a March 10 ceremony in Orlando, Florida, for outstanding support of human spaceflight.
      Read More about Space Flight Awareness Honorees Blood Moon in South Mississippi
      Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Learn More About the Blood Moon U.S. Senator’s Staff Visit NASA Stennis
      NASA’s Stennis Space Center hosts staff members of U.S. Sen. Roger Wicker of Mississippi on March 21 for a site visit. Pictured (left to right) are Kelly McCarthy, NASA Stennis partnership development lead; Troy Frisbie, NASA Stennis legislative affairs officer and chief of staff; Jason Richard, NASA Stennis propulsion business manager; Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate; Emily Yetter, Wicker’s military legislative assistant; Dan Hillenbrand, Wicker’s legislative director; Terry Miller, U.S. Navy Fellow assigned to Wicker’s office; NASA Stennis Associate Director Rodney McKellip; Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office; Drew Parks, Navy Senate liaison officer to Wicker’s office. The members representing the Mississippi senator’s staff toured NASA Stennis, including the Thad Cochran Test Stand, where NASA Stennis is preparing for future Artemis testing.NASA/Danny Nowlin NASA Stennis Hosts Leadership Class
      Approximately 50 members of the Leadership Hancock Class of 2025 visit NASA Stennis on March 26 for a full-day tour that included meeting NASA Stennis leaders and seeing center facilities, such as the Thad Cochran Test Stand pictured in the background. Leadership Hancock is an annual program by the Hancock County Chamber of Commerce designed to identify and cultivate future community leaders.NASA/Danny Nowlin NASA Stennis Interns Tour Site
      NASA student interns stand in the flame deflector at the Fred Haise Test Stand on March 7 during a NASA Stennis site tour. Interns include (left to right): Addison Mitchell (Pathways intern for Engineering and Test Directorate); Andrew Evans (Office of STEM Engagement intern for Autonomous Systems Lab); Mikayla Chandler (Office of STEM Engagement intern for ASTRO CAMP Community Partners); and Kristen Zack (Office of STEM Engagement intern for Autonomous Systems Lab). NASA Office of STEM Engagement paid internships allow high school and college-level students to contribute to agency projects under the guidance of a NASA mentor. The Pathways program offers current students and recent graduates paid internships that can be direct pipelines to full-time employment at NASA upon graduation.NASA/Danny Nowlin Rocket Test Group Visits NASA Stennis
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.
      The group toured the south Mississippi NASA center on March 19, learning how NASA Stennis operates as NASA’s primary, and America’s largest, rocket propulsion test site to serve the nation and commercial sector with its unique capabilities and expertise.
      Read More about Rocket Test Groups Visit > Back to Top
      NASA in the News
      NASA’s Artemis II Orion Service Module Buttoned Up for Launch – NASA
      Welcome Home! NASA’s SpaceX Crew-9 Back on Earth After Science Mission – NASA
      NASA Science Continues After Firefly’s First Moon Mission Concludes – NASA
      NASA Artemis II Core Stage Goes Horizontal Ahead of Final Integration – NASA
      > Back to Top
      Employee Profile: Rebecca Mataya
      Rebecca Mataya is a budget analyst at NASA’s Stennis Space Center. “Whether you are an engineer, analyst, lawyer, technician, communicator or innovator, there is a place for you here at NASA,” she said. “Every skill contributes to the greater mission of pushing the boundaries of exploration, discovery, and progress. If you have a passion, determination, and willingness to learn, NASA is a place where you can grow and leave a lasting impact on the future of space.”NASA/Stennis A career path can unfold in unexpected ways. Ask NASA’s Rebecca Mataya. The journey to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, was not planned but “meant to be,” she said.
      Read More About Rebecca Mataya > Back to Top
      Additional Resources
      My Origin Story: NASA Engineers – Bradley Tyree Artemis II to the Moon: Launch to Splashdown (NASA Mission Animation)
      Explore More
      4 min read Lagniappe for January 2025
      Article 3 months ago 3 min read Lagniappe for February 2025
      Article 2 months ago 4 min read Lagniappe for March 2025
      Article 4 weeks ago View the full article
    • By NASA
      Skywatching Science Skywatching What’s Up: April 2025… Skywatching Home What’s Up What to See Tonight Meteor Showers Eclipses Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network   April (Meteor) Showers and See a City of Stars!
      Enjoy observing planets in the morning and evening sky, look for Lyrid meteors, and hunt for the “faint fuzzy” wonder that is the distant and ancient city of stars known as globular cluster M3. 
      Skywatching Highlights
      All Month – Planet Visibility:
      Mercury: Visible for a few days in the second half of April, extremely low in the east before sunrise. Venus: Rising low in the east in the hour before dawn. Mars: Bright and easy to view after dark all month. Setting a couple of hours after midnight. Jupiter: Bright and easy to spot in the west after dark, setting a couple of hours after sunset. Saturn: Visible low in the east below Venus, before dawn in the last two weeks of April. Daily Highlights:
      April 1 & 30 – Jupiter & Crescent Moon: Find the charming pair in the west as the sky darkens, setting about 3 hours after sunset.
      April 4 & 5 – Mars & Moon: The Moon, around its first quarter phase, appears near Mars in the sky for two nights.
      April 24-25 – Grouping of the Moon & Three Planets: Find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms the morning sky. Mercury is also visible below them for those with a clear view to the horizon.
      All month – Venus: Earth’s hothouse twin planet has made the shift from an evening object to a morning sight. You’ll notice it rising low in the east before dawn, looking a little higher each morning through the month. 
      All month – Mars: Looking bright and reddish in color, Mars is visible high overhead after dark all month. At the start of the month it lies along a line with bright stars Procyon and Pollux, but you’ll notice it moves noticeably over the course of April (~12 degrees or the width of your outstretched fist at arm’s length).
      Transcript
      What’s Up for April? Planets at dusk and dawn, April showers, and observing a distant city of stars.
      Sky chart showing Jupiter and the crescent Moon on April 1. A similar scene repeats on April 30, but with the Moon appearing above Jupiter. NASA/JPL-Caltech First up, in the evening sky, we begin and end the month with Jupiter and the crescent Moon shining brightly together in the western sky as sunset fades. On both April 1st and 30th, you can find the charming pair about half an hour after sunset, setting about 3 hours later.
      Mars is high overhead in the south on April evenings. At the start of the month, it’s directly in between bright stars Procyon and Pollux, but it moves noticeably during the month. You’ll find the first-quarter moon right next to Mars on April 4th and 5th.
      Moving to the morning sky, Venus has now made the switch from an evening object to a morning one. You may start to notice it rising low in the east before dawn, looking a little higher each morning through the month.
      Sky chart showing the eastern sky 45 minutes before sunrise on April 24, with Venus, Saturn and the crescent Moon forming a grouping low in the sky. Mercury might also be visible for those with a completely clear view to the horizon. NASA/JPL-Caltech Around April 24th and 25th, you’ll find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms up the morning sky. Those with a clear view to the horizon might also pick out Mercury looking bright, but very low in the sky.
      April brings shooting stars as Earth passes through one the streams of comet dust that create our annual meteor showers. The Lyrids are a modest meteor shower that peaks overnight on April 21st and into the morning of the 22nd. You can expect up to 15 meteors per hour near the peak under dark skies.
      The Lyrids are best observed from the Northern Hemisphere, but can be seen from south of the equator as well. View them after about 10:30pm local time until dawn, with the best viewing around 5 a.m. The waning crescent moon will rise around 3:30am, but at only 27% full, it shouldn’t interfere too much with your meteor watching. For the best experience, face roughly toward the east, lie down in a safe, dark place away from bright lights, and look straight overhead. Meteors can appear anywhere in the sky, and some Lyrids can leave bright trails that last for a few seconds after they’ve passed.
      NASA studies meteors from the ground, in the air, and from orbit to forecast meteor activity and protect spacecraft, and to understand the composition of comets and asteroids throughout our solar system.
      Sky chart facing east around 9pm in April 2025 showing the location of globular cluster M3. The chart depicts the cluster’s position relative to the Big Dipper and bright stars Arcturus and Cor Caroli. The Big Dipper star Megrez serves as an indicator for the brightness of Cor Caroli. For easy visibility, M3 is depicted brighter and larger than its actual appearance. NASA/JPL-Caltech April offers a chance to observe a truly distant wonder – a globular cluster known as “M3.” It’s a vast collection of stars that lies 34,000 light-years from Earth in our galaxy’s outer reaches. Astronomer Charles Messier discovered this object in 1764, while searching for new comets. Realizing it wasn’t one, he added it to his list of interesting objects that were not comets, which today we know as Messier’s catalog.
      Through binoculars, Messier 3, or M3, appears as a small, fuzzy, star-like patch of light. With a small telescope, you’ll see a more defined glow with a slightly grainy texture. And with telescopes 8 inches or larger, the cluster begins to resolve into hundreds of individual stars. 
      Now, globular clusters contain some of the oldest stars in the universe, often over 10 billion years old. Unlike open clusters like the Pleiades, which sit within the Milky Way’s spiral arms, globular clusters are found in the galaxy’s halo, orbiting far above and below the Milky Way’s disk. Our galaxy has around 150 confirmed globular clusters. M3 itself is probably 11 to 13 billion years old and contains around half a million stars. And it’s relatively easy to spot in April under dark skies with binoculars or a small telescope.
      Finding M3 starts with the Big Dipper. Facing east, use the Dipper’s handle to “arc to Arcturus,” the fourth-brightest star in the night sky. From there, look higher in the sky to find the star Cor Caroli located here to the west of the Dipper’s handle. It’s about as bright as this star in the Dipper’s cup. M3 is located roughly a third of the way from Arcturus to Cor Caroli. With binoculars or a finder scope, sweep within this area until you spot a faint, round glow.
      M3 is an excellent target for beginners and seasoned observers alike. Whether using binoculars or a telescope, you’ll be rewarded with a view of one of the oldest objects in our galaxy.
      The phases of the Moon for April 2025. NASA/JPL-Caltech Above are the phases of the Moon for April.
      Stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NASA History Office brings you the new Spring 2025 issue of NASA History News & Notes reflecting on some of the transitional periods in NASA’s history, as well as the legacies of past programs. Topics include NASA’s 1967 class of astronauts, historic experiments in airborne astronomy, NASA’s aircraft consolidation efforts in the 1990s, lightning observations from space, the founding of the NACA, the DC-8 airborne science laboratory, and more!

      Volume 42, Number 1
      Spring 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      In the first few months of 2025, NASA will celebrate several significant anniversaries, including the 110th anniversary of the National Advisory Committee for Aeronautics (NACA) (March 3), the 55th anniversary of the launch of Apollo 13 (April 11), and the 35th anniversary of the launch of the Hubble Space Telescope (April 24). Celebrating these important milestones is a way for us as an agency and for the public to reflect upon where we have been and what we have accomplished and to think about what we might accomplish next. Continue Reading
      The XS-11 and the Transition Away from Mandatory Jet Pilot Training for NASA Astronauts
      By Jennifer Ross-Nazzal
      Flying in space has been associated with pilots ever since 1959, when NASA announced its first class of astronauts, known as the Mercury 7. Part of being a professional astronaut meant you were a certified jet pilot. Even the scientist-astronauts, so named to differentiate them from the astronauts assigned to the Mercury and Gemini missions, selected in 1965 and in 1967, received pilot training. Until NASA better understood the impact of weightlessness on the human body, Robert R. Gilruth, head of the Manned Spacecraft Center (MSC) in Houston, believed all astronauts should meet this qualification. But when five scientist-astronauts from the 1967 class had a rocky transition, leading them to resign—due to their disinterest in flying at the cost of their scientific training and no spaceflight opportunities—it eventually led NASA to rethink their idea of having all astronauts become jet pilots. Continue Reading
      Portrait of NASA’s 1967 group of astronauts. Seated at the table, left to right, are Philip K. Chapman, Robert A. R. Parker, William E. Thornton, and John A. Llewellyn. Standing, left to right, are Joseph P. Allen IV, Karl G. Henize, Anthony W. England, Donald L. Holmquest, Story Musgrave, William B. Lenoir, and Brian T. O’Leary.NASA The High-Flying Legacy of Airborne Observation: How Experimental Aircraft Contributed to Astronomy at NASA
      By Lois Rosson
      In June 2011, the Stratospheric Observatory for Infrared Astronomy (SOFIA) chased down Pluto’s occultation of a far-away star. … SOFIA’s 2011 observation of Pluto followed up on a historic 1988 observation made by the airborne Kuiper Airborne Observatory (KAO) that proved that Pluto had an atmosphere at all. The technical versatility of both flights, conducted from aircraft hurtling stabilized telescopes through the air, speaks to the legacy of airborne astronomical observation at NASA. But how did this idiosyncratic format emerge in the first place? Airborne astronomy, in which astronomical observations are made from a moving aircraft, was attempted almost as soon as airplanes themselves were developed. Continue Reading
      NASA’s Tortuous Effort to Consolidate its Aircraft
      By Robert Arrighi
      Thirty years ago, on January 6, 1995, NASA Administrator Dan Goldin announced, “We’ve started a revolution at NASA. It’s real. We have a road map for change. We’ve already begun.” Thus began one of the agency’s most daunting endeavors, a top-to-bottom reassessment of NASA’s processes, programmatic assignments, and staffing levels. One of the most controversial aspects of this effort was the proposal to transfer nearly all of the agency’s research aircraft to Dryden Flight Research Center (today known as Armstrong). Continue Reading
      Three ER-2 Aircraft in formation over Golden Gate Bridge, San Francisco, CA on their final flight out of NASA Ames Research Center before redeployment to NASA’s Dryden Flight Research Center, now known as NASA Armstrong.NASA/Eric James The Space Between: Mesoscale Lightning Observations and Weather Forecasting, 1965–82
      By Brad Massey
      Skylab astronaut Edward G. Gibson looked down at Earth often during his 84 days on NASA’s first space station. From his orbital vantage point, Gibson took in the breathtaking views of our planet’s diverse landscapes. He also noted the interesting behavior of the planet’s most powerful electrical force: lightning. … Gibson’s words were of great interest to the lightning researchers affiliated with NASA’s Severe Storms and Local Research Program and others who believed observing Earth’s lightning from low Earth orbit generated valuable data that meteorologists could use to better forecast dangerous storm characteristics and behavior. With these motivations in mind, researchers created new Earth- and space-based experiments from the mid-1960s to the first Space Shuttle missions in the early 1980s that observed lightning on a regional level. Continue Reading
      Adding Color to the Moon: Jack Kinzler’s Oral History Interviews
      By Sandra Johnson
      Manned Spacecraft Center (MSC) Director Robert R. Gilruth placed a call to Jack Kinzler less than four months before the Apollo 11 launch. Gilruth asked him to attend a meeting with a high-level group of individuals from both MSC and NASA Headquarters to discuss ideas for celebrating the first lunar landing. Kinzler, in his capacity as the chief of the Technical Services Division, arrived ready to present his suggestions for commemorating the achievement. Continue Reading
      Apollo 11 astronaut Edwin E. “Buzz” Aldrin Jr. poses for a photograph beside the deployed United States flag during the mission’s extravehicular activity (EVA) on the lunar surface.NASA The Founding of the NACA
      By James Anderson
      One hundred ten years ago this month, NASA’s predecessor organization, the National Advisory Committee for Aeronautics (NACA), was founded. The date of the anniversary marks the passage of a rider to a naval appropriations bill that established the NACA for the modest sum of $5,000 annually. Telling the story of the NACA’s founding in this manner—using March 3, 1915, as the moment in time to represent the NACA’s beginning—is true, but it overlooks two crucial aspects of the founding. The founding was both a culmination and a turning point for science and aeronautics in the United States. Continue Reading
      Remembering the DC-8 Airborne Science Laboratory at NASA
      By Bradley Lynn Coleman
      The NASA History Office and NASA Earth Science Division cohosted a workshop on the recently retired NASA DC-8 Airborne Science Laboratory (1986–2024) at the Mary W. Jackson NASA Headquarters Building in Washington, DC, October 24 and 25, 2024. The workshop celebrated the history of the legendary aircraft; documented DC-8–enabled scientific, engineering, education, and outreach activities; and captured lessons of the past for future operators. Continue Reading
      The DC-8 in flight near Lone Pine, California. NASA/Jim Ross Download the Spring 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      NASA History Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
  • Check out these Videos

×
×
  • Create New...